We propose and experimentally demonstrate a 2×2 thermo-optic(TO) crossbar switch implemented by dual photonic crystal nanobeam(PCN)cavities within a silicon-on-insulator(SOI)platform.By thermally tuning the refra...We propose and experimentally demonstrate a 2×2 thermo-optic(TO) crossbar switch implemented by dual photonic crystal nanobeam(PCN)cavities within a silicon-on-insulator(SOI)platform.By thermally tuning the refractive index of silicon,the resonance wavelength of the PCN cavities can be red-shifted.With the help of the ultrasmall mode volumes of the PCN cavities,only~0.16 mW power is needed to change the switching state.With a spectral passband of 0.09 nm at the 1583.75 nm operation wavelength,the insertion loss(IL)and crosstalk(CT)performances were measured as IL(bar)=-0.2 dB,CT(bar)=-15 dB,IL(cross)=-1.5 dB,and CT(cross)=-15 dB.Furthermore,the thermal tuning efficiency of the fabricated device is as high as1.23 nm/mW.展开更多
We investigate in this paper the influence of slow light on the balance between the Kerr and two-photon absorption(TPA) processes in silicon slotted hybrid nonlinear waveguides. Three typical silicon photonic waveguid...We investigate in this paper the influence of slow light on the balance between the Kerr and two-photon absorption(TPA) processes in silicon slotted hybrid nonlinear waveguides. Three typical silicon photonic waveguide geometries are studied to estimate the influence of the light slow-down factor on the mode field overlap with the silicon region, as well as on the complex effective nonlinear susceptibility. It is found that slotted photonic crystal modes tend to focalize in their hollow core with increasing group index(n_G) values. Considering a hybrid integration of nonlinear polymers in such slotted waveguides, a relative decrease of the TPA process by more factor of 2 is predicted from n_G=10 to n_G=50. As a whole, this work shows that the relative influence of TPA decreases for slotted waveguides operating in the slow light regime, making them a suitable platform for third-order nonlinear optics.展开更多
基金National Natural Science Foundation of China(NSFC)(61235007,61505104,61605112)Science and Technology Commission of Shanghai Municipality(15ZR1422800,16XD1401400)National Key R&D Program of China(2016YFB0402501)
文摘We propose and experimentally demonstrate a 2×2 thermo-optic(TO) crossbar switch implemented by dual photonic crystal nanobeam(PCN)cavities within a silicon-on-insulator(SOI)platform.By thermally tuning the refractive index of silicon,the resonance wavelength of the PCN cavities can be red-shifted.With the help of the ultrasmall mode volumes of the PCN cavities,only~0.16 mW power is needed to change the switching state.With a spectral passband of 0.09 nm at the 1583.75 nm operation wavelength,the insertion loss(IL)and crosstalk(CT)performances were measured as IL(bar)=-0.2 dB,CT(bar)=-15 dB,IL(cross)=-1.5 dB,and CT(cross)=-15 dB.Furthermore,the thermal tuning efficiency of the fabricated device is as high as1.23 nm/mW.
文摘We investigate in this paper the influence of slow light on the balance between the Kerr and two-photon absorption(TPA) processes in silicon slotted hybrid nonlinear waveguides. Three typical silicon photonic waveguide geometries are studied to estimate the influence of the light slow-down factor on the mode field overlap with the silicon region, as well as on the complex effective nonlinear susceptibility. It is found that slotted photonic crystal modes tend to focalize in their hollow core with increasing group index(n_G) values. Considering a hybrid integration of nonlinear polymers in such slotted waveguides, a relative decrease of the TPA process by more factor of 2 is predicted from n_G=10 to n_G=50. As a whole, this work shows that the relative influence of TPA decreases for slotted waveguides operating in the slow light regime, making them a suitable platform for third-order nonlinear optics.