We review the state of the art and our perspectives on silicon and hybrid silicon photonic devices for optical interconnects in datacenters. After a brief discussion of the key requirements for intra-datacenter optica...We review the state of the art and our perspectives on silicon and hybrid silicon photonic devices for optical interconnects in datacenters. After a brief discussion of the key requirements for intra-datacenter optical interconnects, we propose a wavelength-division-multiplexing(WDM)-based optical interconnect for intra-datacenter applications. Following our proposed interconnects configuration, the bulk of the review emphasizes recent developments concerning on-chip hybrid silicon microlasers and WDM transmitters, and silicon photonic switch fabrics for intra-datacenters. For hybrid silicon microlasers and WDM transmitters, we outline the remaining challenges and key issues toward realizing low power consumption, direct modulation, and integration of multiwavelength microlaser arrays. For silicon photonic switch fabrics, we review various topologies and configurations of high-port-count N-by-N switch fabrics using Mach–Zehnder interferometers and microring resonators as switch elements, and discuss their prospects toward practical implementations with active reconfiguration.For the microring-based switch fabrics, we review recent developments of active stabilization schemes at the subsystem level. Last, we outline several large challenges and problems for silicon and hybrid silicon photonics to meet for intra-datacenter applications and propose potential solutions.展开更多
We review current silicon photonic devices and their performance in connection with energy consumption.Four critical issues are identified to lower energy consumption in devices and systems: reducing the influence of ...We review current silicon photonic devices and their performance in connection with energy consumption.Four critical issues are identified to lower energy consumption in devices and systems: reducing the influence of the thermo-optic effect, increasing the wall-plug efficiency of lasers on silicon, optimizing energy performance of modulators, and enhancing the sensitivity of photodetectors. Major conclusions are(1) Mach–Zehnder interferometer-based devices can achieve athermal performance without any extra energy consumption while microrings do not have an efficient passive athermal solution;(2) while direct bonded III–V-based Si lasers can meet system power requirement for now, hetero-epitaxial grown III–V quantum dot lasers are competitive and may be a better option for the future;(3) resonant modulators, especially coupling modulators, are promising for low-energy consumption operation even when the power to stabilize their operation is included;(4) benefiting from high sensitivity and low cost, Ge/Si avalanche photodiode is the most promising photodetector and can be used to effectively reduce the optical link power budget. These analyses and solutions will contribute to further lowering energy consumption to meet aggressive energy demands in future systems.展开更多
基金financial support from the National Science Foundation of China (NSFC)the Research Grants Council (RGC) of the Hong Kong Special Administrative Region (HKSAR) under project N_HKUST606/10+5 种基金the State Key Laboratory on Integrated Optoelectronics, ChinaOpen Fund of the State Key Laboratory on Integrated Optoelectronics under project IOSKL2013KF04the Innovation and Technology Fund (ITF) of the HKSAR under project ITS/023/14 and ITS/087/13the Proof-of-Concept Fund (PCF) of The Hong Kong University of Science and Technology (HKUST) under project no. PCF007.12/13the General Research Fund (GRF) of the HKSAR under project no. 16208114postdoctoral fellowship support from the Hong Kong Scholars Program 2013
文摘We review the state of the art and our perspectives on silicon and hybrid silicon photonic devices for optical interconnects in datacenters. After a brief discussion of the key requirements for intra-datacenter optical interconnects, we propose a wavelength-division-multiplexing(WDM)-based optical interconnect for intra-datacenter applications. Following our proposed interconnects configuration, the bulk of the review emphasizes recent developments concerning on-chip hybrid silicon microlasers and WDM transmitters, and silicon photonic switch fabrics for intra-datacenters. For hybrid silicon microlasers and WDM transmitters, we outline the remaining challenges and key issues toward realizing low power consumption, direct modulation, and integration of multiwavelength microlaser arrays. For silicon photonic switch fabrics, we review various topologies and configurations of high-port-count N-by-N switch fabrics using Mach–Zehnder interferometers and microring resonators as switch elements, and discuss their prospects toward practical implementations with active reconfiguration.For the microring-based switch fabrics, we review recent developments of active stabilization schemes at the subsystem level. Last, we outline several large challenges and problems for silicon and hybrid silicon photonics to meet for intra-datacenter applications and propose potential solutions.
基金supported by the Major International Cooperation and Exchange Program of the National Natural Science Foundation of China under Grant 61120106012
文摘We review current silicon photonic devices and their performance in connection with energy consumption.Four critical issues are identified to lower energy consumption in devices and systems: reducing the influence of the thermo-optic effect, increasing the wall-plug efficiency of lasers on silicon, optimizing energy performance of modulators, and enhancing the sensitivity of photodetectors. Major conclusions are(1) Mach–Zehnder interferometer-based devices can achieve athermal performance without any extra energy consumption while microrings do not have an efficient passive athermal solution;(2) while direct bonded III–V-based Si lasers can meet system power requirement for now, hetero-epitaxial grown III–V quantum dot lasers are competitive and may be a better option for the future;(3) resonant modulators, especially coupling modulators, are promising for low-energy consumption operation even when the power to stabilize their operation is included;(4) benefiting from high sensitivity and low cost, Ge/Si avalanche photodiode is the most promising photodetector and can be used to effectively reduce the optical link power budget. These analyses and solutions will contribute to further lowering energy consumption to meet aggressive energy demands in future systems.