As one of the important materials in landscaping for flower terrace and border, Petunia hybrida needs high environmental conditions and its growth is seriously influenced by the drought. Silicon is considered to be a ...As one of the important materials in landscaping for flower terrace and border, Petunia hybrida needs high environmental conditions and its growth is seriously influenced by the drought. Silicon is considered to be a necessary element for plant growth, and soluble silicon can improve plant resilience. To improve the drought resilience of Petunia hybrida, the silicon transporter protein OsLsi1 and OsLsi2 genes cloned from rice(Oryza sative) were transferred into Petunia hybrida by Agrobacterium-mediated method, and finally got 26 and 32 positive plants, respectively by PCR and RT-PCR detections. With a control of non-transgenic plants, the obtained transgenic plants were taken by drought treatment stress for 0, 4, 7, 10 and 14 days, then re-watered and measured physiological indexes as malondialdehyde(MDA) content, free proline(Pro) content, superoxide dismutase(SOD) activity and peroxidase(POD) activity to study the effect of Petunia's drought resistance. All the results proved that the silicon transporter protein OsLsi1 and OsLsi2 genes were normally transcripted and expressed in transgenic Petunia hybrida; OsLsi1 gene could improve the abilities of plants' drought resistance and recover after drought stress, while OsLsi2 gene could reduce the above abilities. The order of the drought resistance ability of the three strains from strong to weak was OsLsi1〉CK〉OsLsi2; and silicon indeed improved the ability of drought resistance as well. All these results provided a new way to improve the drought resistance of Petunia, and laid a foundation to improve the ability of garden plants' drought resistance and water saving.展开更多
Nodulin 26-like intrinsic proteins(NIPs) are a family of channel-forming transmembrane proteins that function in the transport of water and other small molecules.Some NIPs can mediate silicon transport across plasma m...Nodulin 26-like intrinsic proteins(NIPs) are a family of channel-forming transmembrane proteins that function in the transport of water and other small molecules.Some NIPs can mediate silicon transport across plasma membranes and lead to silicon accumulation in plants,which is beneficial for the growth and development of plants.Cucumber is one of the most widely consumed vegetables;however,the functions of NIPs in this crop are still largely unknown.Here,we report the functional characteristics of Cs NIP2;2.It was found that Cs NIP2;2 is a tandem repeat of Cs NIP2;1,which had been demonstrated to be a silicon influx transporter gene.Cs NIP2;2 has a selectivity filter composed of cysteine,serine,glycine and arginine(CSGR),which is different from all previously characterized silicon influx transporters in higher plants at the second helix position.Xenopus laevis oocytes injected with Cs NIP2;2 c RNA demonstrated a higher uptake of silicon than the control,and the uptake remained unchanged under low temperature.Cs NIP2;2 was found to be expressed in the root,stem,lamina and petiole,and exogenous silicon treatment decreased its expression in the stem but not in other tissues.Transient expression of Cs NIP2;2-e GFP fusion sequence in onion epidermal cells showed that Cs NIP2;2 was localized to the cell nucleus,plasma membrane and an unknown structure inside the cell.The results suggest that Cs NIP2;2 is a silicon influx transporter in cucumber,and its subcellular localization and the selectivity filter are different from those of the previously characterized silicon influx transporters in other plants.These findings may be helpful for understanding the functions of NIPs in cucumber plants.展开更多
We established a model for investigating polycrystalline silicon(poly-Si) thin film transistors(TFTs).The effect of grain boundaries(GBs) on the transfer characteristics of TFT was analyzed by considering the nu...We established a model for investigating polycrystalline silicon(poly-Si) thin film transistors(TFTs).The effect of grain boundaries(GBs) on the transfer characteristics of TFT was analyzed by considering the number and the width of grain boundaries in the channel region,and the dominant transport mechanism of carrier across grain boundaries was subsequently determined.It is shown that the thermionic emission(TE) is dominant in the subthreshold operating region of TFT regardless of the number and the width of grain boundary.To a poly-Si TFT model with a 1 nm-width grain boundary,in the linear region,thermionic emission is similar to that of tunneling(TU),however,with increasing grain boundary width and number,tunneling becomes dominant.展开更多
This paper introduces both laboratory experi- ment and equilibrium calculations concerned with the Si reduction and reoxidation.The results give evidence that the Si transport in different directions just exists in th...This paper introduces both laboratory experi- ment and equilibrium calculations concerned with the Si reduction and reoxidation.The results give evidence that the Si transport in different directions just exists in the furnace hearth synchronistically, by which the desulphurization is also affected.The problems noticed for smelting tow Si pig iron are given.展开更多
A combined conduction and radiation heat transfer model was used to simulate the heat transfer within wafer and investigate the effect of thermal transport properties on temperature non-uniformity within wafer surface...A combined conduction and radiation heat transfer model was used to simulate the heat transfer within wafer and investigate the effect of thermal transport properties on temperature non-uniformity within wafer surface. It is found that the increased conductivities in both doped and undoped regions help reduce the temperature difference across the wafer surface. However, the doped layer conductivity has little effect on the overall temperature distribution and difference. The temperature level and difference on the top surface drop suddenly when absorption coefficient changes from 104 to 103 m-1. When the absorption coefficient is less or equal to 103 m-1, the temperature level and difference do not change much. The emissivity has the dominant effect on the top surface temperature level and difference. Higher surface emissivity can easily increase the temperature level of the wafer surface. After using the improved property data, the overall temperature level reduces by about 200 K from the basis case. The results will help improve the current understanding of the energy transport in the rapid thermal processing and the wafer temperature monitor and control level.展开更多
A finite element-based thermoelastic anisotropic stress model for hexagonal silicon carbide polytype is developed for the calculation of thermal stresses in SiC crystals grown by the physical vapor transport method. T...A finite element-based thermoelastic anisotropic stress model for hexagonal silicon carbide polytype is developed for the calculation of thermal stresses in SiC crystals grown by the physical vapor transport method. The composite structure of the growing SiC crystal and graphite lid is considered in the model. The thermal expansion match between the crucible lid and SiC crystal is studied for the first time. The influence of thermal stress on the dislocation density and crystal quality is discussed.展开更多
基金Supported by the Fund of Science and Technology Research Project of Education Department in Heilongjiang Province(12531014)
文摘As one of the important materials in landscaping for flower terrace and border, Petunia hybrida needs high environmental conditions and its growth is seriously influenced by the drought. Silicon is considered to be a necessary element for plant growth, and soluble silicon can improve plant resilience. To improve the drought resilience of Petunia hybrida, the silicon transporter protein OsLsi1 and OsLsi2 genes cloned from rice(Oryza sative) were transferred into Petunia hybrida by Agrobacterium-mediated method, and finally got 26 and 32 positive plants, respectively by PCR and RT-PCR detections. With a control of non-transgenic plants, the obtained transgenic plants were taken by drought treatment stress for 0, 4, 7, 10 and 14 days, then re-watered and measured physiological indexes as malondialdehyde(MDA) content, free proline(Pro) content, superoxide dismutase(SOD) activity and peroxidase(POD) activity to study the effect of Petunia's drought resistance. All the results proved that the silicon transporter protein OsLsi1 and OsLsi2 genes were normally transcripted and expressed in transgenic Petunia hybrida; OsLsi1 gene could improve the abilities of plants' drought resistance and recover after drought stress, while OsLsi2 gene could reduce the above abilities. The order of the drought resistance ability of the three strains from strong to weak was OsLsi1〉CK〉OsLsi2; and silicon indeed improved the ability of drought resistance as well. All these results provided a new way to improve the drought resistance of Petunia, and laid a foundation to improve the ability of garden plants' drought resistance and water saving.
基金supported by the National Key Research and Development Program of China (2018YFD1000800)the National Natural Science Foundation of China (32072561 and 31772290)。
文摘Nodulin 26-like intrinsic proteins(NIPs) are a family of channel-forming transmembrane proteins that function in the transport of water and other small molecules.Some NIPs can mediate silicon transport across plasma membranes and lead to silicon accumulation in plants,which is beneficial for the growth and development of plants.Cucumber is one of the most widely consumed vegetables;however,the functions of NIPs in this crop are still largely unknown.Here,we report the functional characteristics of Cs NIP2;2.It was found that Cs NIP2;2 is a tandem repeat of Cs NIP2;1,which had been demonstrated to be a silicon influx transporter gene.Cs NIP2;2 has a selectivity filter composed of cysteine,serine,glycine and arginine(CSGR),which is different from all previously characterized silicon influx transporters in higher plants at the second helix position.Xenopus laevis oocytes injected with Cs NIP2;2 c RNA demonstrated a higher uptake of silicon than the control,and the uptake remained unchanged under low temperature.Cs NIP2;2 was found to be expressed in the root,stem,lamina and petiole,and exogenous silicon treatment decreased its expression in the stem but not in other tissues.Transient expression of Cs NIP2;2-e GFP fusion sequence in onion epidermal cells showed that Cs NIP2;2 was localized to the cell nucleus,plasma membrane and an unknown structure inside the cell.The results suggest that Cs NIP2;2 is a silicon influx transporter in cucumber,and its subcellular localization and the selectivity filter are different from those of the previously characterized silicon influx transporters in other plants.These findings may be helpful for understanding the functions of NIPs in cucumber plants.
基金Funded by the National Natural Science Foundation of China(Nos.51202063 and 51177003)Hubei Provincial Department of Education(No.Q20111009)
文摘We established a model for investigating polycrystalline silicon(poly-Si) thin film transistors(TFTs).The effect of grain boundaries(GBs) on the transfer characteristics of TFT was analyzed by considering the number and the width of grain boundaries in the channel region,and the dominant transport mechanism of carrier across grain boundaries was subsequently determined.It is shown that the thermionic emission(TE) is dominant in the subthreshold operating region of TFT regardless of the number and the width of grain boundary.To a poly-Si TFT model with a 1 nm-width grain boundary,in the linear region,thermionic emission is similar to that of tunneling(TU),however,with increasing grain boundary width and number,tunneling becomes dominant.
文摘This paper introduces both laboratory experi- ment and equilibrium calculations concerned with the Si reduction and reoxidation.The results give evidence that the Si transport in different directions just exists in the furnace hearth synchronistically, by which the desulphurization is also affected.The problems noticed for smelting tow Si pig iron are given.
基金Project(N110204015)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2012M510075)supported by the China Postdoctoral Science Foundation
文摘A combined conduction and radiation heat transfer model was used to simulate the heat transfer within wafer and investigate the effect of thermal transport properties on temperature non-uniformity within wafer surface. It is found that the increased conductivities in both doped and undoped regions help reduce the temperature difference across the wafer surface. However, the doped layer conductivity has little effect on the overall temperature distribution and difference. The temperature level and difference on the top surface drop suddenly when absorption coefficient changes from 104 to 103 m-1. When the absorption coefficient is less or equal to 103 m-1, the temperature level and difference do not change much. The emissivity has the dominant effect on the top surface temperature level and difference. Higher surface emissivity can easily increase the temperature level of the wafer surface. After using the improved property data, the overall temperature level reduces by about 200 K from the basis case. The results will help improve the current understanding of the energy transport in the rapid thermal processing and the wafer temperature monitor and control level.
基金The project supported by the National Natural Science Foundation of China (10472126)the Knowledge Innovation Program of Chinese Academy of Sciences
文摘A finite element-based thermoelastic anisotropic stress model for hexagonal silicon carbide polytype is developed for the calculation of thermal stresses in SiC crystals grown by the physical vapor transport method. The composite structure of the growing SiC crystal and graphite lid is considered in the model. The thermal expansion match between the crucible lid and SiC crystal is studied for the first time. The influence of thermal stress on the dislocation density and crystal quality is discussed.