Silicon/carbon composites,which integrate the high lithium storage performance of silicon with the exceptional mechanical strength and conductivity of carbon,will replace the traditional graphite electrodes for high-e...Silicon/carbon composites,which integrate the high lithium storage performance of silicon with the exceptional mechanical strength and conductivity of carbon,will replace the traditional graphite electrodes for high-energy lithium-ion batteries.Various strategies have been designed to synthesize silicon/carbon composites for tackling the issues of anode pulverization and poor stability in the anodes,thereby improving the lithium storage ability.The effect of the regulation method at each scale on the final negative electrode performance remains unclear.However,it has not been fully clarified how the regulation methods at each scale influence the final anode performance.This review will categorize the materials structure into three scales:molecular scale,nanoscale,and microscale.First,the review will examine modification methods at the molecular scale,focusing on the interfacial bonding force between silicon and carbon.Next,it will summarize various nanostructures and special shapes in the nanoscale to explore the construction of silicon/carbon composites.Lastly,the review will provide an analysis of microscale control approaches,focusing on the formation of composite particle with micron size and the utilization of micro-Si.This review provides a comprehensive overview of the multi-scale design of silicon/carbon composite anode materials and their optimization strategies to enhance the performance of lithium-ion batteries.展开更多
To improve the catalytic performance of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)towards carbon soot,we utilized the impregnation method to incorporate Ag into the prepared LSCF catalyst.We conducted a series of cha...To improve the catalytic performance of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)towards carbon soot,we utilized the impregnation method to incorporate Ag into the prepared LSCF catalyst.We conducted a series of characterization tests and evaluated the soot catalytic activity of the composite catalyst by comparing it with the LaCoO_(3) group,LaFeO_(3) group,and catalyst-free group.The results indicate that the Ag-LSCF composite catalyst exhibits the highest soot catalytic activity,with the characteristic temperature values of 376.3,431.1,and 473.9℃at 10%,50%,and 90%carbon soot conversion,respectively.These values are 24.8,20.2,and 23.1℃lower than those of the LSCF group.This also shows that LSCF can improve the catalytic activity of soot after compounding with Ag,and reflects the necessity of using catalysts in soot combustion reaction.XPS characterization and BET test show that Ag-LSCF has more abundant surface-adsorbed oxygen species,larger specific surface area and pore volume than LSCF,which also proves that Ag-LSCF has higher soot catalytic activity.展开更多
MXenes are a family of two-dimensional(2D)layered transition metal carbides/nitrides that show promising potential for energy storage applications due to their high-specific surface areas,excellent electron conductivi...MXenes are a family of two-dimensional(2D)layered transition metal carbides/nitrides that show promising potential for energy storage applications due to their high-specific surface areas,excellent electron conductivity,good hydrophilicity,and tunable terminations.Among various types of MXenes,Ti_(3)C_(2)T_(x) is the most widely studied for use in capacitive energy storage applications,especially in supercapacitors(SCs).However,the stacking and oxidation of MXene sheets inevitably lead to a significant loss of electrochemically active sites.To overcome such challenges,carbon materials are frequently incorporated into MXenes to enhance their electrochemical properties.This review introduces the common strategies used for synthesizing Ti_(3)C_(2)T_(x),followed by a comprehensive overview of recent developments in Ti_(3)C_(2)T_(x)/carbon composites as electrode materials for SCs.Ti_(3)C_(2)T_(x)/carbon composites are categorized based on the dimensions of carbons,including 0D carbon dots,1D carbon nanotubes and fibers,2D graphene,and 3D carbon materials(activated carbon,polymer-derived carbon,etc.).Finally,this review also provides a perspective on developing novel MXenes/carbon composites as electrodes for application in SCs.展开更多
Two-dimensional carbon/carbon(2D C/C)composites are a special class of carbon/carbon composites,generally obtained by combining resin-impregnated carbon fiber clothes,which are then cured and carbonized.This study dea...Two-dimensional carbon/carbon(2D C/C)composites are a special class of carbon/carbon composites,generally obtained by combining resin-impregnated carbon fiber clothes,which are then cured and carbonized.This study deals with the preparation of a protective coating for these materials.This coating,based on graphite,was prepared by the slurry method.The effect of graphite and phenolic resin powders with different weight ratios was examined.The results have shown that the coating slurry can fill the pores and cracks of the composite surface,thereby densifying the surface layer of the material.With the increase of the graphite powder/phenolic resin weight ratio,the coating density is enhanced while the coating surface flatness decreases;moreover,the protective ability of coating against erosion first increases(from 1:3 to 2:2)and then decreases(from 2:2 to 3:1).When the weight ratio is about 1:1,the coating for 2D C/C composites exhibits the best erosion resistance,which greatly aids these materials during gas quenching.In this case,the erosion rate is decreased by approximately 41.5%at the impact angle of 30°and 52.3%at normal impact,respectively.This can be attributed to the ability of the coating slurry to infiltrate into the substrate,thereby bonding the fibers together and increasing the compactness of the 2D C/C composites.展开更多
The mitigation of sulphation and parasitic hydrogen evolution is considered as prominent research emphasis for the development of lead-carbon batteries(LCBs)in large-scale energy storage applications.Here,cooperative ...The mitigation of sulphation and parasitic hydrogen evolution is considered as prominent research emphasis for the development of lead-carbon batteries(LCBs)in large-scale energy storage applications.Here,cooperative Pb-C composites consisting of single atom Pb and carbon-encapsulated PbO nanoparticles were prepared by freeze-drying technique and pyrolytic reduction to address above obstacles.The innovative use of Pb^(2+)to cross-link sodium alginate enabled a uniform distribution of Pb in the composites,generating Pb-C-PbO three-phase heterostructure.Experimental analysis and theoretical calculations revealed the synergistic interactions between single-atom Pb and PbO nanoparticles in suppressing parasitic hydrogen evolution and promoting the adsorption of Pb atoms.The presence of monatomic Pb and PbO enhanced the affinity of the composites for the negative active materials and facilitated the transformation of the active materials from bulk into spherical shapes to enhance the specific surface area,thereby counteracting sulphation.Through the coordinated integration of various functionalities offered by Pb@C-x,the cycle life of the battery at HRPSoC reaches 7025 cycles,which is two times for LCB with pure carbon materials.Additionally,the discharge capacity increased from 3.52 to 3.79 Ah.This study provides substantial insights into the construction of Pb-C composites for LCBs to inhibit negative sulphation and hydrogen evolution.展开更多
This work adopts a multi⁃step etching⁃heat treatment strategy to prepare porous silicon microsphere com⁃posite with Sb⁃Sn surface modification and carbon coating(pSi/Sb⁃Sn@C),using industrial grade SiAl alloy micro⁃sp...This work adopts a multi⁃step etching⁃heat treatment strategy to prepare porous silicon microsphere com⁃posite with Sb⁃Sn surface modification and carbon coating(pSi/Sb⁃Sn@C),using industrial grade SiAl alloy micro⁃spheres as a precursor.pSi/Sb⁃Sn@C had a 3D structure with bimetallic(Sb⁃Sn)modified porous silicon micro⁃spheres(pSi/Sb⁃Sn)as the core and carbon coating as the shell.Carbon shells can improve the electronic conductivi⁃ty and mechanical stability of porous silicon microspheres,which is beneficial for obtaining a stable solid electrolyte interface(SEI)film.The 3D porous core promotes the diffusion of lithium ions,increases the intercalation/delithia⁃tion active sites,and buffers the volume expansion during the intercalation process.The introduction of active met⁃als(Sb⁃Sn)can improve the conductivity of the composite and contribute to a certain amount of lithium storage ca⁃pacity.Due to its unique composition and microstructure,pSi/Sb⁃Sn@C showed a reversible capacity of 1247.4 mAh·g^(-1) after 300 charge/discharge cycles at a current density of 1.0 A·g^(-1),demonstrating excellent rate lithium storage performance and enhanced electrochemical cycling stability.展开更多
In order to explore the effect of artificial accelerated aging temperature on the performance of carbon fiber/epoxy resin composites,we used artificial seawater as the aging medium,designed the aging environment of se...In order to explore the effect of artificial accelerated aging temperature on the performance of carbon fiber/epoxy resin composites,we used artificial seawater as the aging medium,designed the aging environment of seawater at different temperatures under normal pressure,and studied the aging behavior of carbon fiber/epoxy composites.The infrared spectroscopy results show that,with the increase of aging temperature,the degree of hydrolysis of the composite is greater.At the same time,after 250 days of aging of artificial seawater at regular temperature,40 and 60 ℃,the moisture absorption rates of composite materials were 0.45%,0.63%,and 1.05%,and the retention rates of interlaminar shear strength were 91%,78%,and 62%,respectively.It is shown that the temperature of the aging environment has a significant impact on the hygroscopic behavior and mechanical properties of the composite,that is,the higher the temperature,the faster the moisture absorption of the composite,and the faster the decay of the mechanical properties of the composite.展开更多
Transition metal Ni anchored in carbon material represents outstanding 2e?oxygen reduction reaction(ORR)catalytic selectivity,but enhancing the adsorption strength of intermediate*OOH to promote its selectivity remain...Transition metal Ni anchored in carbon material represents outstanding 2e?oxygen reduction reaction(ORR)catalytic selectivity,but enhancing the adsorption strength of intermediate*OOH to promote its selectivity remains a major challenge.Herein,the NiX/Ni@NCHS composite catalyst with heteroatom doping(O,S)is modulated by controlling partial pyrolysis strategies on honeycomb-like porous carbon to manipulate the electronic structure of the metal Ni.With the synergistic effect of honeycomb structure and O atom,NiO/Ni@NCHS-700 exhibits an exceptional H_(2)O_(2)selectivity of above 89.1%across a wide potential range from 0.1 to 0.6 V in an alkaline electrolyte,and an unexpected H_(2)O_(2)production rate up to 1.47 mol gcat^(-1) h^(-1)@0.2 V,which outperforms most of the state-of-the-art catalyst.Meanwhile,NiS/Ni@NCHS exhibits excellent electrocatalytic performance,with 2e?ORR selectivity of 91.3%,H_(2)O_(2)yield of 1.85@0.3 V.Density functional theory simulations and experiments results reveal that the heteroatom doping(O,S)method has been employed to regulate the adsorption strength of Ni atoms with*OOH,and combined with the self-sacrificing template-assisted pyrolysis approach to improve the microstructure of catalysts and optimize the active site.The heteroatom doping method in this work provides significant guidance for promoting 2e?ORR electrocatalysis to produce H_(2)O_(2).展开更多
Silicone is a kind of polymer material with high cross-linked structure,which is com-posed by Si-O-Si main chain.Due to the special molecular chain structure,silicone mate-rials are characterized by oxidation resistan...Silicone is a kind of polymer material with high cross-linked structure,which is com-posed by Si-O-Si main chain.Due to the special molecular chain structure,silicone mate-rials are characterized by oxidation resistance,aging resistance,high and low temperature resistance and chemical corrosion resistance.Moreover,silicone materials have process-able properties,simple forming process,good mechanical property,non-toxic and pollution-free.Therefore,silicone has been widely concerned by researchers at home and abroad.In this paper,the main research progress and application directions of carbon-silicone composite at home and abroad in recent years are reviewed.展开更多
The coating layers of Tri-structural Isotropic Particles(TRISO)serve to protect the kernel and act as barriers to fission products.Sintering aids in the silicon carbide matrix variably react with TRISO coating layers,...The coating layers of Tri-structural Isotropic Particles(TRISO)serve to protect the kernel and act as barriers to fission products.Sintering aids in the silicon carbide matrix variably react with TRISO coating layers,leading to the destruction of the coating layers.Investigating how carbon content affects element diffusion in silicon carbide-based TRISO composite fuel is of great significance for predicting reactor safety.In this study,silicon carbide-based TRISO composite fuels with different carbon contents were prepared by adding varying amounts of phenolic resin to the silicon carbide matrix.X-ray Diffraction(XRD)and Scanning Electron Microscopy(SEM)were employed to characterize the phase composition,morphology,and microstructure of the composite fuels.The elemental content in each coating layer of TRISO was quantified using Energy-Dispersive X-ray Spectroscopy(EDS).The results demonstrated that the addition of phenolic resin promoted the uniform distribution of sintering aids in the silicon carbide matrix.The atomic percentage(at.%)of aluminum(Al)in the pyrolytic carbon layer of the TRISO particles reached its lowest value of 0.55%when the phenolic resin addition was 1%.This is because the addition of phenolic resin caused the Al and silicon(Si)in the matrix to preferentially react with the carbon in the phenolic resin to form a metastable liquid phase,rather than preferentially consuming the pyrolytic carbon in the outer coating layer of the TRISO particles.The findings suggest that carbon addition through phenolic resin incorporation can effectively mitigate the deleterious reactions between the TRISO coating layers and sintering aids,thereby enhancing the durability and safety of silicon carbide-based TRISO composite fuels.展开更多
In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in har...In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients.展开更多
To fabricate electronic packaging shell of coppermatrix composite with characteristics of high ther mal conductivity and low thermal expansion coefficient, semisolid forming technology, and powder metallurgy was combi...To fabricate electronic packaging shell of coppermatrix composite with characteristics of high ther mal conductivity and low thermal expansion coefficient, semisolid forming technology, and powder metallurgy was combined. Conventional mechanical mixing of Cu and SiC could have insufficient wettability, and a new method of semisolid processing was introduced for billets preparation. The SiC/Cu composites were first prepared by PM, and then, semisolid reheating was performed for the successive semisolid forging. Composite billets with SiC 35 % vol ume fraction were compacted and sintered pressurelessly, microstructure analysis showed that the composites pre pared by PM had high density, and the combination between SiC particles and Cualloy was good. Semisolid reheating was the crucial factor in determining the micro structure and thixotropic property of the billet. An opti mised reheating strategy was proposed: temperature 1,025 ℃and holding time 5 min.展开更多
Carbon nanotube (CNT) filled silicone rubber (SR) composites were synthesized by in situ polymerization.The effect of strain on the electrical resistance of the CNT/SR composites and the structure evolution of CNT...Carbon nanotube (CNT) filled silicone rubber (SR) composites were synthesized by in situ polymerization.The effect of strain on the electrical resistance of the CNT/SR composites and the structure evolution of CNT networks during tensile deformation were investigated.The results showed that the CNT/SR composites had high sensitivity of resistance-strain response.In a wide strain range (0-125%),the change of resistivity could reach 107,which was closely associated with the evolution process of the conductive CNT-network structure.The volume expansion of the composites in the tensile process led to a gradual decrease in the volume fraction of CNTs with the strain increase.When CNT loading was lower than the percolation threshold,CNT network was in disconnected state with a rapid increase in electrical resistance of the composites.Furthermore,the CNT loading had remarkable effect on the sensitivity of resistance-strain response in the composites.展开更多
To improve the oxidation resistance of carbon/carbon composites,ZrB2-MoSi2/SiC coating on the carbon/carbon substrate was prepared.The inner coating of SiC was prepared by pack cementation and the outer coating of ZrB...To improve the oxidation resistance of carbon/carbon composites,ZrB2-MoSi2/SiC coating on the carbon/carbon substrate was prepared.The inner coating of SiC was prepared by pack cementation and the outer coating of ZrB2-MoSi2 was prepared by slurry painting.The phase compositions and microstructures of the coating were characterized by XRD and SEM,respectively.The preparation and the high temperature oxidation property of the coated composites were investigated.The results show that the outer coating of carbon/carbon composites is composed of ZrB2,MoSi2 and SiC phases.The mass losses of the ZrB2-MoSi2/SiC coated samples with SiC nano-whiskers after 30 h and 10 h of oxidation at 1 273 K and 1 773 K were,respectively,5.3% and 3.0%.The ZrB2-MoSi2/SiC coated samples exhibit self-sealing performance and good oxidation resistance at high temperature.展开更多
To improve the oxidation resistance of C/C composites, a double SiC protective coating was prepared by a two-step technique. Firstly, the inner SiC layer was prepared by a pack cementation technique, and then an outer...To improve the oxidation resistance of C/C composites, a double SiC protective coating was prepared by a two-step technique. Firstly, the inner SiC layer was prepared by a pack cementation technique, and then an outer uniform and compact SiC coating was obtained by low pressure chemical vapor deposition. The microstructures and phase compositions of the coatings were characterized by SEM, EDS and XRD analyses. Oxidation behaviour of the SiC coated C/C composites was also investigated. It was found that the double SiC coating could protect C/C composites against oxidation at 1773 K in air for 178 h with a mass loss of 1.25%. The coated samples also underwent thermal shocks between 1773 K and room temperature 16 times. The mass loss of the coated C/C composites was only 2.74%. Double SiC layer structures were uniform and dense, and can suppress the generation of thermal stresses, facilitating an excellent anti-oxidation coating.展开更多
A novel SiC?ZrB2 coating was prepared using a two-step technique by slurry-sintering and chemical vapor reaction on carbon/carbon (C/C) composites. The SiC?ZrB2 coating was composed of the scattered ZrB2 phase and the...A novel SiC?ZrB2 coating was prepared using a two-step technique by slurry-sintering and chemical vapor reaction on carbon/carbon (C/C) composites. The SiC?ZrB2 coating was composed of the scattered ZrB2 phase and the continuous SiC phase. It was observed that a good adhesion was built between the coating and the C/C composites. The SiC?ZrB2 coating samples exhibited a better ablation resistance in comparison with the uncoated C/C composites. The SiO2?ZrO2 barrier layer, the heat dissipation of the gaseous products and the pinning effect of ZrO2 all contributed to the good ablation resistance of the SiC?ZrB2 coated composites.展开更多
Short carbon fiber felts with an initial porosity of 89.5% were deposited by isobaric, isothermal chemical vapor infiltration using natural gas as carbon source. The bulk density of the deposited carbon/carbon (C/C)...Short carbon fiber felts with an initial porosity of 89.5% were deposited by isobaric, isothermal chemical vapor infiltration using natural gas as carbon source. The bulk density of the deposited carbon/carbon (C/C) composites was 1.89 g/cm3 after depositing for 150 h. The microstructure and mechanical properties of the C/C composites were studied by polarized light microscopy, X-ray diffraction, scanning electron microscopy and three-point bending test. The results reveal that high textured pyrolytic carbon is deposited as the matrix of the composites, whose crystalline thickness and graphitization degree highly increase after heat treatment. A distinct decrease of the flexural strength and modulus accompanied by the increase of the toughness of the C/C composites is found to be correlated with the structural changes in the composites during the heat treatment process.展开更多
Dramatic capacity fading and poor rate performance are two main obstacles that severely hamper the widespread application of the Si anode owing to its large volume variation during cycling and low intrinsic electrical...Dramatic capacity fading and poor rate performance are two main obstacles that severely hamper the widespread application of the Si anode owing to its large volume variation during cycling and low intrinsic electrical conductivity.To mitigate these issues,free-standing N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites(Si/C-ZIF-8/CNFs)are designed and synthesized by electrospinning and carbonization methods,which present greatly enhanced electrochemical properties for lithium-ion battery anodes.This particular structure alleviates the volume variation,promotes the formation of stable solid electrolyte interphase(SEI)film,and improves the electrical conductivity.As a result,the as-obtained free-standing Si/C-ZIF-8/CNFs electrode delivers a high reversible capacity of 945.5 mAh g^(-1) at 0.2 A g^(-1) with a capacity retention of 64% for 150 cycles,and exhibits a reversible capacity of 538.6 mA h g^(-1) at 0.5 A g^(-1) over 500 cycles.Moreover,the full cell composed of a freestanding Si/C-ZIF-8/CNFs anode and commercial LiNi_(1/3)Co_(1/3)Mn_(1/3)O_(2)(NCM)cathode shows a capacity of 63.4 mA h g^(-1) after 100 cycles at 0.2 C,which corresponds to a capacity retention of 60%.This rational design could provide a new path for the development of high-performance Si-based anodes.展开更多
A hip joint simulator was employed to predict the clinical wear behaviour of carbon/carbon (C/C) composites with needled carbon cloth preform and carbon felt preform. Wear particles generated from the two kinds of C...A hip joint simulator was employed to predict the clinical wear behaviour of carbon/carbon (C/C) composites with needled carbon cloth preform and carbon felt preform. Wear particles generated from the two kinds of C/C composites were isolated and characterised by the size distribution and morphology. The evolvement of wear particles in the hip joint simulator was proposed. The results show that the wear particles from two kinds of C/C composites have a size ranging from submicron to tens of micrometers. The wear particles have various morphologies including broken fiber, fragment fiber, slice pyrolytic carbon and spherical pyrolytic carbon. C/C composites with needled carbon cloth preforms have larger size range and more broken fiber particles and slice pyrolytic carbon particles in comparison with C/C composites with carbon felt preforms. The evolvement of pyrolytic carbon particles is caused by surface regularization, whereas, the evolvement of carbon fiber particles is related to stress direction in the hip joint simulator.展开更多
TiO2-coated activated carbon surface (TAs) composites were prepared by a sol-gel method with supercritical pretreatment. The photocatalytic degradation of acid yellow (AY) was investigated under UV radiation to es...TiO2-coated activated carbon surface (TAs) composites were prepared by a sol-gel method with supercritical pretreatment. The photocatalytic degradation of acid yellow (AY) was investigated under UV radiation to estimate activity of catalysts and determine the kinetics. And the effects of parameters including the initial concentration of AY, light intensity and TiO2 content in catalysts were examined. The results indicate that TAs has a higher efficiency in decomposition of AY than P25, pure TiO2 particles as well as the mixture of TiO2 powder and active carbon. The photocatalytic degradation rate is found to follow the pseudo-first order kinetics with respect to the AY concentration. The new kinetic model fairly resembles the classic Langmuir-Hinshelwood equation, and the rate constant is proportional to the square root of the light intensity in a wide range. However, its absorption performance depends on the surface areas of catalysts. The model fits quite well with the experimental data and elucidates phenomena about the effects of the TiO2 content in TAs on the degradation rate.展开更多
基金funded by the Research Fund of State Key Laboratory of Mesoscience and Engineering (MESO-23-T03)the National Natural Science Foundation (22278423)+1 种基金the National Key Research and Development Program of China (2022YFB3805602)the Science Foundation of China University of Petroleum,Beijing (2462021QNXZ007)。
文摘Silicon/carbon composites,which integrate the high lithium storage performance of silicon with the exceptional mechanical strength and conductivity of carbon,will replace the traditional graphite electrodes for high-energy lithium-ion batteries.Various strategies have been designed to synthesize silicon/carbon composites for tackling the issues of anode pulverization and poor stability in the anodes,thereby improving the lithium storage ability.The effect of the regulation method at each scale on the final negative electrode performance remains unclear.However,it has not been fully clarified how the regulation methods at each scale influence the final anode performance.This review will categorize the materials structure into three scales:molecular scale,nanoscale,and microscale.First,the review will examine modification methods at the molecular scale,focusing on the interfacial bonding force between silicon and carbon.Next,it will summarize various nanostructures and special shapes in the nanoscale to explore the construction of silicon/carbon composites.Lastly,the review will provide an analysis of microscale control approaches,focusing on the formation of composite particle with micron size and the utilization of micro-Si.This review provides a comprehensive overview of the multi-scale design of silicon/carbon composite anode materials and their optimization strategies to enhance the performance of lithium-ion batteries.
文摘To improve the catalytic performance of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)towards carbon soot,we utilized the impregnation method to incorporate Ag into the prepared LSCF catalyst.We conducted a series of characterization tests and evaluated the soot catalytic activity of the composite catalyst by comparing it with the LaCoO_(3) group,LaFeO_(3) group,and catalyst-free group.The results indicate that the Ag-LSCF composite catalyst exhibits the highest soot catalytic activity,with the characteristic temperature values of 376.3,431.1,and 473.9℃at 10%,50%,and 90%carbon soot conversion,respectively.These values are 24.8,20.2,and 23.1℃lower than those of the LSCF group.This also shows that LSCF can improve the catalytic activity of soot after compounding with Ag,and reflects the necessity of using catalysts in soot combustion reaction.XPS characterization and BET test show that Ag-LSCF has more abundant surface-adsorbed oxygen species,larger specific surface area and pore volume than LSCF,which also proves that Ag-LSCF has higher soot catalytic activity.
基金supported by the Basic Scientific Research Funds for Colleges and Universities affiliated to Hebei Province(JST2022005)Thanks are given to the financial support from the National Natural Science Foundation of China(22005099).
文摘MXenes are a family of two-dimensional(2D)layered transition metal carbides/nitrides that show promising potential for energy storage applications due to their high-specific surface areas,excellent electron conductivity,good hydrophilicity,and tunable terminations.Among various types of MXenes,Ti_(3)C_(2)T_(x) is the most widely studied for use in capacitive energy storage applications,especially in supercapacitors(SCs).However,the stacking and oxidation of MXene sheets inevitably lead to a significant loss of electrochemically active sites.To overcome such challenges,carbon materials are frequently incorporated into MXenes to enhance their electrochemical properties.This review introduces the common strategies used for synthesizing Ti_(3)C_(2)T_(x),followed by a comprehensive overview of recent developments in Ti_(3)C_(2)T_(x)/carbon composites as electrode materials for SCs.Ti_(3)C_(2)T_(x)/carbon composites are categorized based on the dimensions of carbons,including 0D carbon dots,1D carbon nanotubes and fibers,2D graphene,and 3D carbon materials(activated carbon,polymer-derived carbon,etc.).Finally,this review also provides a perspective on developing novel MXenes/carbon composites as electrodes for application in SCs.
基金This paper has obtained the support of the National Natural Science Foundation of China(No.51902039)High-Level Talents Innovation Support Plan of Dalian(No.2020RQ127)Scientific Research Project of Liaoning Provincial Department Education(No.LJKZ0722)。
文摘Two-dimensional carbon/carbon(2D C/C)composites are a special class of carbon/carbon composites,generally obtained by combining resin-impregnated carbon fiber clothes,which are then cured and carbonized.This study deals with the preparation of a protective coating for these materials.This coating,based on graphite,was prepared by the slurry method.The effect of graphite and phenolic resin powders with different weight ratios was examined.The results have shown that the coating slurry can fill the pores and cracks of the composite surface,thereby densifying the surface layer of the material.With the increase of the graphite powder/phenolic resin weight ratio,the coating density is enhanced while the coating surface flatness decreases;moreover,the protective ability of coating against erosion first increases(from 1:3 to 2:2)and then decreases(from 2:2 to 3:1).When the weight ratio is about 1:1,the coating for 2D C/C composites exhibits the best erosion resistance,which greatly aids these materials during gas quenching.In this case,the erosion rate is decreased by approximately 41.5%at the impact angle of 30°and 52.3%at normal impact,respectively.This can be attributed to the ability of the coating slurry to infiltrate into the substrate,thereby bonding the fibers together and increasing the compactness of the 2D C/C composites.
基金supported by the National Natural Science Foundation of China (52064028,22002054)Yunnan Fundamental Research Projects (202401AT070334,202101AS070013)Yunnan Provincial Major Science and Technology Special Plan Projects (202202AF080002)。
文摘The mitigation of sulphation and parasitic hydrogen evolution is considered as prominent research emphasis for the development of lead-carbon batteries(LCBs)in large-scale energy storage applications.Here,cooperative Pb-C composites consisting of single atom Pb and carbon-encapsulated PbO nanoparticles were prepared by freeze-drying technique and pyrolytic reduction to address above obstacles.The innovative use of Pb^(2+)to cross-link sodium alginate enabled a uniform distribution of Pb in the composites,generating Pb-C-PbO three-phase heterostructure.Experimental analysis and theoretical calculations revealed the synergistic interactions between single-atom Pb and PbO nanoparticles in suppressing parasitic hydrogen evolution and promoting the adsorption of Pb atoms.The presence of monatomic Pb and PbO enhanced the affinity of the composites for the negative active materials and facilitated the transformation of the active materials from bulk into spherical shapes to enhance the specific surface area,thereby counteracting sulphation.Through the coordinated integration of various functionalities offered by Pb@C-x,the cycle life of the battery at HRPSoC reaches 7025 cycles,which is two times for LCB with pure carbon materials.Additionally,the discharge capacity increased from 3.52 to 3.79 Ah.This study provides substantial insights into the construction of Pb-C composites for LCBs to inhibit negative sulphation and hydrogen evolution.
文摘This work adopts a multi⁃step etching⁃heat treatment strategy to prepare porous silicon microsphere com⁃posite with Sb⁃Sn surface modification and carbon coating(pSi/Sb⁃Sn@C),using industrial grade SiAl alloy micro⁃spheres as a precursor.pSi/Sb⁃Sn@C had a 3D structure with bimetallic(Sb⁃Sn)modified porous silicon micro⁃spheres(pSi/Sb⁃Sn)as the core and carbon coating as the shell.Carbon shells can improve the electronic conductivi⁃ty and mechanical stability of porous silicon microspheres,which is beneficial for obtaining a stable solid electrolyte interface(SEI)film.The 3D porous core promotes the diffusion of lithium ions,increases the intercalation/delithia⁃tion active sites,and buffers the volume expansion during the intercalation process.The introduction of active met⁃als(Sb⁃Sn)can improve the conductivity of the composite and contribute to a certain amount of lithium storage ca⁃pacity.Due to its unique composition and microstructure,pSi/Sb⁃Sn@C showed a reversible capacity of 1247.4 mAh·g^(-1) after 300 charge/discharge cycles at a current density of 1.0 A·g^(-1),demonstrating excellent rate lithium storage performance and enhanced electrochemical cycling stability.
文摘In order to explore the effect of artificial accelerated aging temperature on the performance of carbon fiber/epoxy resin composites,we used artificial seawater as the aging medium,designed the aging environment of seawater at different temperatures under normal pressure,and studied the aging behavior of carbon fiber/epoxy composites.The infrared spectroscopy results show that,with the increase of aging temperature,the degree of hydrolysis of the composite is greater.At the same time,after 250 days of aging of artificial seawater at regular temperature,40 and 60 ℃,the moisture absorption rates of composite materials were 0.45%,0.63%,and 1.05%,and the retention rates of interlaminar shear strength were 91%,78%,and 62%,respectively.It is shown that the temperature of the aging environment has a significant impact on the hygroscopic behavior and mechanical properties of the composite,that is,the higher the temperature,the faster the moisture absorption of the composite,and the faster the decay of the mechanical properties of the composite.
文摘Transition metal Ni anchored in carbon material represents outstanding 2e?oxygen reduction reaction(ORR)catalytic selectivity,but enhancing the adsorption strength of intermediate*OOH to promote its selectivity remains a major challenge.Herein,the NiX/Ni@NCHS composite catalyst with heteroatom doping(O,S)is modulated by controlling partial pyrolysis strategies on honeycomb-like porous carbon to manipulate the electronic structure of the metal Ni.With the synergistic effect of honeycomb structure and O atom,NiO/Ni@NCHS-700 exhibits an exceptional H_(2)O_(2)selectivity of above 89.1%across a wide potential range from 0.1 to 0.6 V in an alkaline electrolyte,and an unexpected H_(2)O_(2)production rate up to 1.47 mol gcat^(-1) h^(-1)@0.2 V,which outperforms most of the state-of-the-art catalyst.Meanwhile,NiS/Ni@NCHS exhibits excellent electrocatalytic performance,with 2e?ORR selectivity of 91.3%,H_(2)O_(2)yield of 1.85@0.3 V.Density functional theory simulations and experiments results reveal that the heteroatom doping(O,S)method has been employed to regulate the adsorption strength of Ni atoms with*OOH,and combined with the self-sacrificing template-assisted pyrolysis approach to improve the microstructure of catalysts and optimize the active site.The heteroatom doping method in this work provides significant guidance for promoting 2e?ORR electrocatalysis to produce H_(2)O_(2).
文摘Silicone is a kind of polymer material with high cross-linked structure,which is com-posed by Si-O-Si main chain.Due to the special molecular chain structure,silicone mate-rials are characterized by oxidation resistance,aging resistance,high and low temperature resistance and chemical corrosion resistance.Moreover,silicone materials have process-able properties,simple forming process,good mechanical property,non-toxic and pollution-free.Therefore,silicone has been widely concerned by researchers at home and abroad.In this paper,the main research progress and application directions of carbon-silicone composite at home and abroad in recent years are reviewed.
基金funded by the Shanghai Academic/Technology Research Leader(Project No.21XD1432000).
文摘The coating layers of Tri-structural Isotropic Particles(TRISO)serve to protect the kernel and act as barriers to fission products.Sintering aids in the silicon carbide matrix variably react with TRISO coating layers,leading to the destruction of the coating layers.Investigating how carbon content affects element diffusion in silicon carbide-based TRISO composite fuel is of great significance for predicting reactor safety.In this study,silicon carbide-based TRISO composite fuels with different carbon contents were prepared by adding varying amounts of phenolic resin to the silicon carbide matrix.X-ray Diffraction(XRD)and Scanning Electron Microscopy(SEM)were employed to characterize the phase composition,morphology,and microstructure of the composite fuels.The elemental content in each coating layer of TRISO was quantified using Energy-Dispersive X-ray Spectroscopy(EDS).The results demonstrated that the addition of phenolic resin promoted the uniform distribution of sintering aids in the silicon carbide matrix.The atomic percentage(at.%)of aluminum(Al)in the pyrolytic carbon layer of the TRISO particles reached its lowest value of 0.55%when the phenolic resin addition was 1%.This is because the addition of phenolic resin caused the Al and silicon(Si)in the matrix to preferentially react with the carbon in the phenolic resin to form a metastable liquid phase,rather than preferentially consuming the pyrolytic carbon in the outer coating layer of the TRISO particles.The findings suggest that carbon addition through phenolic resin incorporation can effectively mitigate the deleterious reactions between the TRISO coating layers and sintering aids,thereby enhancing the durability and safety of silicon carbide-based TRISO composite fuels.
文摘In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients.
基金supported by the National Natural Science Foundation of China(No.51174028)the Beijing Natural Science Foundation(No.2102029)
文摘To fabricate electronic packaging shell of coppermatrix composite with characteristics of high ther mal conductivity and low thermal expansion coefficient, semisolid forming technology, and powder metallurgy was combined. Conventional mechanical mixing of Cu and SiC could have insufficient wettability, and a new method of semisolid processing was introduced for billets preparation. The SiC/Cu composites were first prepared by PM, and then, semisolid reheating was performed for the successive semisolid forging. Composite billets with SiC 35 % vol ume fraction were compacted and sintered pressurelessly, microstructure analysis showed that the composites pre pared by PM had high density, and the combination between SiC particles and Cualloy was good. Semisolid reheating was the crucial factor in determining the micro structure and thixotropic property of the billet. An opti mised reheating strategy was proposed: temperature 1,025 ℃and holding time 5 min.
基金Funded by Liaoning Education Department (No.LS2010128)the Scientific Research Fund of University of Jinan (No.XKY0901)
文摘Carbon nanotube (CNT) filled silicone rubber (SR) composites were synthesized by in situ polymerization.The effect of strain on the electrical resistance of the CNT/SR composites and the structure evolution of CNT networks during tensile deformation were investigated.The results showed that the CNT/SR composites had high sensitivity of resistance-strain response.In a wide strain range (0-125%),the change of resistivity could reach 107,which was closely associated with the evolution process of the conductive CNT-network structure.The volume expansion of the composites in the tensile process led to a gradual decrease in the volume fraction of CNTs with the strain increase.When CNT loading was lower than the percolation threshold,CNT network was in disconnected state with a rapid increase in electrical resistance of the composites.Furthermore,the CNT loading had remarkable effect on the sensitivity of resistance-strain response in the composites.
基金Project(50721003) supported by the Innovation Community Foundation of National Natural Science of ChinaProject(2011CB605805) supported by the National Basic Research Program of China
文摘To improve the oxidation resistance of carbon/carbon composites,ZrB2-MoSi2/SiC coating on the carbon/carbon substrate was prepared.The inner coating of SiC was prepared by pack cementation and the outer coating of ZrB2-MoSi2 was prepared by slurry painting.The phase compositions and microstructures of the coating were characterized by XRD and SEM,respectively.The preparation and the high temperature oxidation property of the coated composites were investigated.The results show that the outer coating of carbon/carbon composites is composed of ZrB2,MoSi2 and SiC phases.The mass losses of the ZrB2-MoSi2/SiC coated samples with SiC nano-whiskers after 30 h and 10 h of oxidation at 1 273 K and 1 773 K were,respectively,5.3% and 3.0%.The ZrB2-MoSi2/SiC coated samples exhibit self-sealing performance and good oxidation resistance at high temperature.
基金Projects(51221001,51222207)supported by the National Natural Science Foundation of ChinaProject(090677)supported by the Program for New Century Excellent Talents in University of Ministry of Education of ChinaProject(B08040)supported by the Program of Introducing Talents of Discipline to Universities (111 Project) of China
文摘To improve the oxidation resistance of C/C composites, a double SiC protective coating was prepared by a two-step technique. Firstly, the inner SiC layer was prepared by a pack cementation technique, and then an outer uniform and compact SiC coating was obtained by low pressure chemical vapor deposition. The microstructures and phase compositions of the coatings were characterized by SEM, EDS and XRD analyses. Oxidation behaviour of the SiC coated C/C composites was also investigated. It was found that the double SiC coating could protect C/C composites against oxidation at 1773 K in air for 178 h with a mass loss of 1.25%. The coated samples also underwent thermal shocks between 1773 K and room temperature 16 times. The mass loss of the coated C/C composites was only 2.74%. Double SiC layer structures were uniform and dense, and can suppress the generation of thermal stresses, facilitating an excellent anti-oxidation coating.
基金Projects(51404041,51304249)supported by the National Natural Science Foundation of ChinaProject(2015JJ3016)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(2011CB605801)supported by the National Basic Research Program of ChinaProject supported by the State Key Laboratory for Powder Metallurgy Foundation,Central South University,Changsha,China
文摘A novel SiC?ZrB2 coating was prepared using a two-step technique by slurry-sintering and chemical vapor reaction on carbon/carbon (C/C) composites. The SiC?ZrB2 coating was composed of the scattered ZrB2 phase and the continuous SiC phase. It was observed that a good adhesion was built between the coating and the C/C composites. The SiC?ZrB2 coating samples exhibited a better ablation resistance in comparison with the uncoated C/C composites. The SiO2?ZrO2 barrier layer, the heat dissipation of the gaseous products and the pinning effect of ZrO2 all contributed to the good ablation resistance of the SiC?ZrB2 coated composites.
基金Projects(51221001,50972121)supported by the National Natural Science Foundation of ChinaProject(B08040)supported by the Introducing Talents of Discipline to Universities,ChinaProject(11-BZ-2012)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China
文摘Short carbon fiber felts with an initial porosity of 89.5% were deposited by isobaric, isothermal chemical vapor infiltration using natural gas as carbon source. The bulk density of the deposited carbon/carbon (C/C) composites was 1.89 g/cm3 after depositing for 150 h. The microstructure and mechanical properties of the C/C composites were studied by polarized light microscopy, X-ray diffraction, scanning electron microscopy and three-point bending test. The results reveal that high textured pyrolytic carbon is deposited as the matrix of the composites, whose crystalline thickness and graphitization degree highly increase after heat treatment. A distinct decrease of the flexural strength and modulus accompanied by the increase of the toughness of the C/C composites is found to be correlated with the structural changes in the composites during the heat treatment process.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.21965034,21703185,U1903217,51901013,and 21666037)the Xinjiang Autonomous Region Major Projects(2017A02004)+4 种基金the Leading Project Foundation of Science Department of Fujian Province(Grant No.2018H0034)the Resource Sharing Platform Construction Project of Xinjiang Province(PT1909)the Nature Science Foundation of Xinjiang Province(2017D01C074)the Opening Project of National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials,Henan University of Science and Technology(No.HKDNM201906)the Young Scholar Science Foundation of Xinjiang Educational Institutions(XJEDU2016S030)。
文摘Dramatic capacity fading and poor rate performance are two main obstacles that severely hamper the widespread application of the Si anode owing to its large volume variation during cycling and low intrinsic electrical conductivity.To mitigate these issues,free-standing N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites(Si/C-ZIF-8/CNFs)are designed and synthesized by electrospinning and carbonization methods,which present greatly enhanced electrochemical properties for lithium-ion battery anodes.This particular structure alleviates the volume variation,promotes the formation of stable solid electrolyte interphase(SEI)film,and improves the electrical conductivity.As a result,the as-obtained free-standing Si/C-ZIF-8/CNFs electrode delivers a high reversible capacity of 945.5 mAh g^(-1) at 0.2 A g^(-1) with a capacity retention of 64% for 150 cycles,and exhibits a reversible capacity of 538.6 mA h g^(-1) at 0.5 A g^(-1) over 500 cycles.Moreover,the full cell composed of a freestanding Si/C-ZIF-8/CNFs anode and commercial LiNi_(1/3)Co_(1/3)Mn_(1/3)O_(2)(NCM)cathode shows a capacity of 63.4 mA h g^(-1) after 100 cycles at 0.2 C,which corresponds to a capacity retention of 60%.This rational design could provide a new path for the development of high-performance Si-based anodes.
基金Projects (50832004, 51202194) supported by National Natural Science Foundation of ChinaProject (11-BZ-2012) supported by the Research Fund of the State Key Laboratory of Solidification Processing (NWPU), China+1 种基金Project (T201107) supported by Shenzhen Key Laboratory of Special Functional Materials, Shenzhen University, ChinaProject (B08040) supported by 111 Project of China
文摘A hip joint simulator was employed to predict the clinical wear behaviour of carbon/carbon (C/C) composites with needled carbon cloth preform and carbon felt preform. Wear particles generated from the two kinds of C/C composites were isolated and characterised by the size distribution and morphology. The evolvement of wear particles in the hip joint simulator was proposed. The results show that the wear particles from two kinds of C/C composites have a size ranging from submicron to tens of micrometers. The wear particles have various morphologies including broken fiber, fragment fiber, slice pyrolytic carbon and spherical pyrolytic carbon. C/C composites with needled carbon cloth preforms have larger size range and more broken fiber particles and slice pyrolytic carbon particles in comparison with C/C composites with carbon felt preforms. The evolvement of pyrolytic carbon particles is caused by surface regularization, whereas, the evolvement of carbon fiber particles is related to stress direction in the hip joint simulator.
基金Project(50802034) supported by the National Natural Science Foundation of ChinaProject(11A093) supported by the Key Project Foundation by the Education Department of Hunan Province,China
文摘TiO2-coated activated carbon surface (TAs) composites were prepared by a sol-gel method with supercritical pretreatment. The photocatalytic degradation of acid yellow (AY) was investigated under UV radiation to estimate activity of catalysts and determine the kinetics. And the effects of parameters including the initial concentration of AY, light intensity and TiO2 content in catalysts were examined. The results indicate that TAs has a higher efficiency in decomposition of AY than P25, pure TiO2 particles as well as the mixture of TiO2 powder and active carbon. The photocatalytic degradation rate is found to follow the pseudo-first order kinetics with respect to the AY concentration. The new kinetic model fairly resembles the classic Langmuir-Hinshelwood equation, and the rate constant is proportional to the square root of the light intensity in a wide range. However, its absorption performance depends on the surface areas of catalysts. The model fits quite well with the experimental data and elucidates phenomena about the effects of the TiO2 content in TAs on the degradation rate.