Aluminum (Al) toxicity is a considerable factor limiting crop yield and biomass in acidic soil. Tartary buckwheatgrowing in acidic soil may suffer from Al poisoning. Here, we investigated the influence of Al stress on...Aluminum (Al) toxicity is a considerable factor limiting crop yield and biomass in acidic soil. Tartary buckwheatgrowing in acidic soil may suffer from Al poisoning. Here, we investigated the influence of Al stress on the growthof tartary buckwheat seedling roots, and the alleviation of Al stress by silicon (Si), as has been demonstrated inmany crops. Under Al stress, root growth (total root length, primary root length, root tips, root surface area, androot volume) was significantly inhibited, and Al and malondialdehyde (MDA) accumulated in the root tips. At thesame time, catalase (CAT) and ascorbate peroxidase activities, polyphenols, flavonoids, and 1,1-diphenyl-2-picrylhydrazyl(DPPH) and 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) free-radical scavenging abilitywere significantly decreased. After the application of Si, root growth, Al accumulation, and oxidative damage wereimproved. Compared to Al-treated seedlings, the contents of ·O2− and MDA decreased by 29.39% and 25.22%,respectively. This was associated with Si-induced increases in peroxidase and CAT enzyme activity, flavonoidcompounds, and free-radical scavenging (DPPH and ABTS). The application of Si therefore has positive effectson Al toxicity in tartary buckwheat roots by reducing Al accumulation in the roots and maintaining oxidationhomeostasis.展开更多
The production of low-temperature reheated grain-oriented silicon steel is mainly based on the acquired inhibitor method.Due to the additional nitriding process,a high nitrogen content exists in the oxide layer,which ...The production of low-temperature reheated grain-oriented silicon steel is mainly based on the acquired inhibitor method.Due to the additional nitriding process,a high nitrogen content exists in the oxide layer,which changes the structure of the oxide layer.In this study,the structure of the surface oxide layer after nitriding was analyzed by scanning electron microscopy(SEM),electron back-scattered diffraction(EBSD),glow discharge spectrometry(GDS),and X-ray diffraction(XRD).The size and orientation of ferritic grains in the oxide layer were characterized,and the distribution characteristics of the key elements along the thickness direction were determined.The results show that the oxide layer of the steel sample mainly comprised particles of Fe2SiO4 and spherical and lamellar SiO2,and Fe4N and fcc-Fe phases were also detected.Moreover,the size and orientation of ferritic grains in the oxide layer were different from those of coarse matrix ferritic grains beneath the oxide layer;however,some ferritic grains exhibited same orientations as those in the neighboring matrix.Higher nitrogen content was detected in the oxide layer than that in the matrix beneath the oxide layer.The form of nitrogen enrichment in the oxide layer was analyzed,and the growth mechanism of ferritic grains during the oxide layer formation is proposed.展开更多
An active anode material for Li-ion batteries was synthesized using a simple mechanochemical process to minimize the large change in Si volume observed during charge-discharge operation and to compensate for the assoc...An active anode material for Li-ion batteries was synthesized using a simple mechanochemical process to minimize the large change in Si volume observed during charge-discharge operation and to compensate for the associated irreversible loss of Li or irreversible capacity loss, which are obstacles to achieve high-performance electrochemical properties during charge-discharge. The composite was mechanochemically milled with Si, lithium oxide, and copper oxide as raw materials;the composite contains Si nanoparticles, amorphous silicon monoxide, and Si-Li or Si-Cu alloy compounds, and it exhibits improved electrochemical properties. In particular, this composite achieved a better capacity retention, higher coulombic efficiency (over 100%), and longer cycling performance than Si alone, indicating considerable optimization of the electrical and ionic conductivity in the composite. The developed method allowed for control of the Li content to compensate for the lack of Li ions in the composite, and the cycling performance was optimized using the Cu alloy, oxide, and Li compounds within the composite.展开更多
A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35 μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit ...A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35 μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit visible to near infra-red (NIR) light (the spectrum ranges from 500 nm to 1000 nm) in reverse bias avalanche breakdown mode with working voltage between 8.35 V-12 V and emit NIR light (the spectrum ranges from 900 nm to 1300 nm) in the forward injection mode with working voltage below 2 V. An apparent modulation effect on the light intensity from the polysilicon gate is observed in the forward injection mode. Furthermore, when the gate oxide is broken down, NIR light is emitted from the polysilicon/oxide/silicon structure. Optoelectronic characteristics of the device working in different modes are measured and compared. The mechanisms behind these different emissions are explored.展开更多
Nanocomposites(PMSEPE/Q8M8^H) were prepared via solution blending of octakis(dimethylsiloxy)octasilsesquoixane(Q8M8^H) into poly(dimethylsilyleneethynylenephenyleneethynyle ne)(PMSEPE). PMSEPE/Q8M8^H nanocom...Nanocomposites(PMSEPE/Q8M8^H) were prepared via solution blending of octakis(dimethylsiloxy)octasilsesquoixane(Q8M8^H) into poly(dimethylsilyleneethynylenephenyleneethynyle ne)(PMSEPE). PMSEPE/Q8M8^H nanocomposites were characterized by Fourier transform infrared(FT-IR) spectroscopy, rheological measurement, differential scanning calorimetry(DSC), scanning electron microscopy(SEM) and thermal gravimetric analysis(TGA). The experimental results show that the hydrosilylation reaction in PMSEPE/Q8M8^H nanocomposites occurs slowly exceeding 180 ℃. PMSEPE/Q8M8^H nanocomposites can be cured at temperatures less than 260 ℃ and the cube structure of Q8M8^H keeps stable during the curing process. POSS domains are evenly dispersed in the cured nanocomposite. However, serious aggregation of POSS occurs at 15% Q8M8^H content. The thermal and thermooxidative stabilities of PMSEPE/Q8M8^H nanocomposites obviously depend on the content of Q8M8^H. The incorporation of Q8M8^H can effectively enhance the thermal and thermooxidative stabilities of cured PMSEPE. PMSEPE/Q8M8^H nanocomposites can be the candidates for applications in high temperature environment.展开更多
Photoluminescence (PL) characteristics of Tb-doped silicon rich oxide (SRO) films prepared by DC-sputtering and post-annealing processes were studied. The silicon richness of the SRO film could be controlled by va...Photoluminescence (PL) characteristics of Tb-doped silicon rich oxide (SRO) films prepared by DC-sputtering and post-annealing processes were studied. The silicon richness of the SRO film could be controlled by varying the sputtering power and oxygen concentration in the sputtering chamber. PL emission from the as-deposited sample was found to be composed of Th^3 + intra 4f transition-related emission and the silicon nano particle-related broad bandwidth emission. Thermal annealing could significantly improve the material properties as well as the PL signals. PL properties depended strongly upon the annealing scheme and silicon richness. Annealing at high temperatures (900- 1050℃) enhanced Tbrelated emission and suppressed the silicon nano particle-related emission. For samples with different silicon richness, annealing at 950 ℃ was found to produce higher PL signals than at other temperatures. It was attributed more to lifetime quenching than to concentration quenching. Electroluminescent (EL) devices with a capacitor structure were fabricated, the optimized process condition for the EL device was found to be different from that of PL emission. Among the annealing schemes that were used, wet oxidation was found to improve device performance the most, whereas, dry oxidation was found to improve material property the most. Wet oxidation allowed the breakdown electrical field to increase significantly and to reach above 10 mV·cm^-1. The EL spectra showed a typical Th^3+ emission, agreeing well with the PL spectra. The I-V measurements indicated that for 100 nm thick film, the Fowler-Nordheim tunneling started at an electrical field of around 6 mV·cm^-1 and the light emission became detectable at a current density of around 10-4 A·cm^-2 and higher. Strong electroluminescence light emission was detected when the electrical field was close to 10 mV·cm^-1.展开更多
Nafion/Silicon oxide composite membranes were produced via in situ sol-gel reaction of tetraethylorthosilicate (TEOS) in Nafion membranes. The physicochemical properties of the membranes were studied by FT-IR,TG-DSC...Nafion/Silicon oxide composite membranes were produced via in situ sol-gel reaction of tetraethylorthosilicate (TEOS) in Nafion membranes. The physicochemical properties of the membranes were studied by FT-IR,TG-DSC and tensile strength. The results show that the silicon oxide is compatible with the Nation membrane and the thermo stability of Nation/Silicon oxide composite membrane is higher than that of Nation membrane. Furthermore, the tensile strength of Nation/Silicon oxide composite membrane is similar to that of the Nation membrane. The proton conductivity of Nation/Silicon oxide composite membrane is higher than that of Nation membrane. When the Nation/Silicon oxide composite membrane was employed as an electrolyte in H2/O2 PEMFC, a higher current density value (1 000 mA/cm^2 at 0.38 V) than that of the Nafion1135 membrane (100 mA/cm^2 at 0.04 V) was obtained at 110 ℃.展开更多
In this work, n-type amorphous silicon oxide thin films were deposited by RF-PECVD method using a gas mixture of SiH4, CO2, H2, and PHy The deposition rate, refractive index, band gap, crystalline volume fraction, and...In this work, n-type amorphous silicon oxide thin films were deposited by RF-PECVD method using a gas mixture of SiH4, CO2, H2, and PHy The deposition rate, refractive index, band gap, crystalline volume fraction, and conductivity of the silicon oxide thin films were determined and analyzed. The film with refractive index of 1.99, band gap of 2.6eV and conductivity of 10-7 S/cm was obtained, which was suitable for the intermediate reflector layer.展开更多
1. Introduction Thermal oxidation of silicon monocrystalis a very important process in fabricationof metal--oxide--semiconductor (MOS) devices.In recent years it has received great atten-tion. Various proposals for ox...1. Introduction Thermal oxidation of silicon monocrystalis a very important process in fabricationof metal--oxide--semiconductor (MOS) devices.In recent years it has received great atten-tion. Various proposals for oxidation modeshave been made by different groups.Now most of the authors working in thisfield hold the view that the oxidation rateof silicon obeys a typical parabolic rule,that is, the oxidation reaction is controlledby diffusion. The experimental data inRef. can be taken and a kinetic curve展开更多
A new method for determination of trace silicon in high purity lanthanum oxide by using electrothermal vaporization (ETV) ICP AES with polytetrafluoroethylene(PTFE) slurry as a fluorinating reagent has been proposed...A new method for determination of trace silicon in high purity lanthanum oxide by using electrothermal vaporization (ETV) ICP AES with polytetrafluoroethylene(PTFE) slurry as a fluorinating reagent has been proposed. Under the optimized experimental conditions, the fluorination reactions of analyte(Si) and matrix(La) with PTFE in the graphite furnace took place at high temperature, and the fractional volatilily between Si and La was observed. Based on this principle the matrix interference could be eliminated. The detection limit of Si was 4.0 μg·L -1 , and the RSD was 3.4%( C =0.2 mg·L -1 , n =10). The procedure proposed has been applied successfully to determine trace Si in La 2O 3 without any chemical pre treatment.展开更多
In the present paper,a silicon nitride-based composite processed with rare-earth oxidesadditives is presented.Its bend strength can be maintained at a value as high as 1000 MPafrom 1000 to 1370℃ and the fracture toug...In the present paper,a silicon nitride-based composite processed with rare-earth oxidesadditives is presented.Its bend strength can be maintained at a value as high as 1000 MPafrom 1000 to 1370℃ and the fracture toughness measures 9-10 MPa·m<sup>1/2</sup>.The static fa-tigue behavior at 1370℃ of this material is also encouraging.Besides,two another α′/β′sialon composites doped with rare-earth oxides are also described.The effects of processingparameters on the microstructure and the properties of the materials are discussed in somedetails.展开更多
The magnetic properties of single crystals Si,Sr Ti O_(3),La Al O_(3),Mg O,and(La,Sr)(Al,Ta)O_(3)were investigated systematically.Three origins of the magnetizations of these crystals,namely,an intrinsic diamagnetic,a...The magnetic properties of single crystals Si,Sr Ti O_(3),La Al O_(3),Mg O,and(La,Sr)(Al,Ta)O_(3)were investigated systematically.Three origins of the magnetizations of these crystals,namely,an intrinsic diamagnetic,a paramagnetic,and a ferromagnetic contribution,have been found to influence the magnetic signals measured on the crystals,in some important application scenarios such crystals being served as substrates with the magnetic thin film epitaxially grown on.Quantitative analyses methodologies were developed and thorough investigations were performed on the crystals with the intrinsic materials parameters thus revealed,especially that the intrinsic diamagnetic susceptibility differential dχdia/d T were identified quantitatively for the first time in Sr Ti O_(3),La Al O_(3),Mg O,and(La,Sr)(Al,Ta)O_(3).The paramagnetic contribution is found to be the key in terms of the magnetic properties of the crystals,which in turn is in fact a consequence of the 3d impurities doping inside the crystal.All the intrinsic materials parameters are given in this paper as datasets,the datasets are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00028.展开更多
Objective:To investigate the protective and therapeutic role of ginseng against silicon dioxide nanoparticles(SiO2NPs)-induced toxicity in the lungs.Methods:Sixty male rats were divided into five groups(n=12/group);gr...Objective:To investigate the protective and therapeutic role of ginseng against silicon dioxide nanoparticles(SiO2NPs)-induced toxicity in the lungs.Methods:Sixty male rats were divided into five groups(n=12/group);group 1 was used as a control,group 2 received ginseng,group 3 was treated with SiO2NPs,and group 4 was pretreated with ginseng one week before SiO2NPs,while group 5 was given SiO2NPs one week before supplementation with ginseng.Animals were treated with both ginseng and SiO2NPs orally for five weeks.Real-time PCR was used to measure gene expression.Besides,DNA damage and cell cycle changes were determined by comet assay and flow cytometry,respectively.Histological study was also done to assess the effect of ginseng on SiO2NPs-induced toxicity.Results:SiO2NPs increased lipid peroxidation and decreased the activities of antioxidant enzymes.SiO2NPs induced apoptosis in lung tissues as revealed by upregulation of Bax and caspase 3 and downregulation of Bcl-2 as well as the induction of DNA damage.SiO2NPs also caused inflammation as indicated by upregulation of the inflammation-related genes[interleukin 1 beta(IL-1β),tumor necrosis factor-alpha(TNF-α),nuclear factor kappa B(NF-κB),cyclooxygenase 2(COX2),and transforming growth factor-beta 1(TGFβ1)]as well as cell cycle arrest in the G0/G1 phase of lung cells.Moreover,histopathological examination proved the biochemical and molecular perturbations that occurred due to SiO2NPs toxicity.However,ginseng alleviated SiO2NPs-induced toxicity in rat lung.Conclusions:Ginseng has a potent preventive and therapeutic effect and could be used in the treatment of SiO2NPs-induced pulmonary toxicity.展开更多
Based on the quantum confinement-luminescence center model, to ensembles of spherical silicon nanocrystals (nc-Si) containing two kinds of luminescence centers (LCs) in the layers surrounding the nc-Si, the relations...Based on the quantum confinement-luminescence center model, to ensembles of spherical silicon nanocrystals (nc-Si) containing two kinds of luminescence centers (LCs) in the layers surrounding the nc-Si, the relationship between the photoluminescence (PL) and the thickness of the layer is studied with the excitation energy flux density as a parameter. When there is no layer surrounding the nc-Si, the electron-heavy hole pair can only recombine inside the nc-Si, then the PL blueshift with reducing particle sizes roughly accords with the rule predicted by the quantum confinement model of Canham. When there presences a layer, some of the carriers may tunnel into it and recombine outside the nc-Si at the LCs to emit visible light. The thicker the layer is, the higher the radiative recombination rate occurred outside the nc-Si will be. When the central scale of the nc-Si is much smaller than the critical scale, the radiative recombination rate outside the nc-Si dominates, and visible PL will be possible for some nc-Si samples with big average radius, greater than 4 nm, for example. When there is only one kind of LC in the layer, the PL peak position does not shift with reducing particle sizes. All these conclusions are in accord with the experimental results. When there are two or more kinds of LCs in the layer, the PL peak position energy and intensity swing with reducing particle sizes.展开更多
Visible light-sensitive photocatalyst was developed by combining n-type silicon (n-Si) and tungsten trioxide (WO3, n-Si/WO3), yielding an ohmic contact in between. In this system, the ohmic contact acted as an electro...Visible light-sensitive photocatalyst was developed by combining n-type silicon (n-Si) and tungsten trioxide (WO3, n-Si/WO3), yielding an ohmic contact in between. In this system, the ohmic contact acted as an electron-and-hole mediator for the transfer of electrons and holes in the conduction band (CB) of WO3 and in the valence band (VB) of n-Si, respectively. Utilizing thus- constructed n-Si/WO3, the decomposition of 2-propanolto CO2 via acetone was achieved under visible light irradiation, by the contribution of holes in the VB of WO3 to decompose 2-propanol and the consumption of electrons in the CB of n-Si to reduce O2. The combination of p-type Si (p-Si) and WO3 (p-Si/ WO3), not the ohmic contact but the rectifying contact, was much less effective, compared to n-Si/WO3.展开更多
Silicon/graphite(Si/Gr)nanocomposites with controlled void spaces and encapsulated by a carbon shell(Si/Gr@void@C)are synthesized by utilizing high-energy ball milling to reduce micron-sized particles to nanoscale,fol...Silicon/graphite(Si/Gr)nanocomposites with controlled void spaces and encapsulated by a carbon shell(Si/Gr@void@C)are synthesized by utilizing high-energy ball milling to reduce micron-sized particles to nanoscale,followed by carbonization of polydopamine(PODA)to form a carbon shell,and finally partial etching of the nanostructured Si core by NaOH solution at elevated temperatures.In particular,the effects of ball milling time and NaOH etching temperature on the electrochemical properties of Si/Gr@void@C are investigated.Increasing the ball milling time results in the improved specific capacity of Si-based anodes.Carbon coating further enhances the specific capacity and capacity retention over charge/discharge cycles.The best cycle stability is achieved after partial etching of the Si core inside Si/Gr@void@C particles at either 70 or 80C,leading to little or no capacity decay over 130 cycles.However,it is found that both carbon coating and NaOH etching processes cause some surface oxidation of the nanostructured Si particles derived from high-energy ball milling.The surface oxidation of the nanostructured Si results in decreases in specific capacity and should be minimized in future studies.The mechanistic understanding developed in this study paves the way to further improve the electrochemical performance of Si/Gr@void@C nanocomposites in future.展开更多
In systems in atomic and nano scales such as clusters or agglomerates constituted of particles from a few to less than one hundred of atoms, quantum confinement effects are very important. Their optical and electronic...In systems in atomic and nano scales such as clusters or agglomerates constituted of particles from a few to less than one hundred of atoms, quantum confinement effects are very important. Their optical and electronic properties are often dependent on the size of the systems and the way in which the atoms in these clusters are bonded. Generally, these nano-structures display optical and electronic properties significantly different of those found in corresponding bulk materials. Silicon agglomerates found in Silicon Rich Oxide (SRO) films have optical properties, which have reported as depended directly on nano-crystal size. Furthermore, the room temperature photoluminescence (PL) of Silicon Rich Oxides (SRO) has repeatedly generated a huge interest due to their possible applications in optoelectronic devices. However, a plausible emission mechanism has not yet widespread acceptance of the scientific community. In this research, we employed the Density Functional Theory with a functional B3LYP and a basis set 6 - 31G* to calculate the optical and electronic properties of small (six to ten silicon atoms) and medium size clusters of silicon (constituted of eleven to fourteen silicon atoms). With the theoretical calculation of the structural and optical properties of silicon clusters, it is possible to evaluate the contribution of silicon agglomerates in the luminescent emission mechanism experimentally found in thin SRO films.展开更多
A one-dimensional continuous analytic potential solution to a generic oxide-silicon^xide system is developed. With the analytic solution, the potential distribution in the silicon film is predicted. A physics-based re...A one-dimensional continuous analytic potential solution to a generic oxide-silicon^xide system is developed. With the analytic solution, the potential distribution in the silicon film is predicted. A physics-based relation between surface potentials is also derived and then applied to the generic oxide-silicon-oxide metal oxide-semiconductor field-effect transistors (MOSFETs) for the calculation of surface potentials展开更多
A kind of new nano composite with ultraviolet (UV) ray resistance and high temperature stability was prepared by in-situ polymerization in low temperature. Polysulfonamide (PSA) was synthesized with 4, 4'-diamin...A kind of new nano composite with ultraviolet (UV) ray resistance and high temperature stability was prepared by in-situ polymerization in low temperature. Polysulfonamide (PSA) was synthesized with 4, 4'-diaminodiphenyl sulfone (DDS) and terephthaloyl chloride (TPC) in the common solvent N, N-Dimethyl- -acetamide (DMAc). Nano filler is a certain nano titanium oxide modified by silicon oxide (TMS), which plays the role of UV resistance additives. Properties of the novel composite materials were characterized by Atomic Force microscopy (AFM), thermal gravimetric Analysis (TGA) and Ultraviolet Spectroscopy. AFM had showed the sizes and distributions of TMS particles in the nanocomposite. Ultraviolet Spectroscopy for the nanocomposites showed a large absorption in UV band. TGA showed the decomposition temperature was increased over ten degrees with 0.5% wt TMS for this nanocomposite compared with pure PSA.展开更多
Si-doped zinc oxide(SZO) thin films are deposited by using a co-sputtering method,and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures.The effects of silicon content o...Si-doped zinc oxide(SZO) thin films are deposited by using a co-sputtering method,and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures.The effects of silicon content on the optical transmittance of the SZO thin film and electrical properties of the SZO TFT are investigated.Moreover,the electrical performances and bias-stress stabilities of the single- and dual-active-layer TFTs are investigated and compared to reveal the effects of the Si doping and dual-active-layer structure.The average transmittances of all the SZO films are about 90% in the visible light region of 400 nm-800 nm,and the optical band gap of the SZO film gradually increases with increasing Si content.The Si-doping can effectively suppress the grain growth of ZnO,revealed by atomic force microscope analysis.Compared with that of the undoped ZnO TFT,the off-state current of the SZO TFT is reduced by more than two orders of magnitude and it is 1.5 × 10^-12 A,and thus the on/off current ratio is increased by more than two orders of magnitude.In summary,the SZO/ZnO TFT with dual-active-layer structure exhibits a high on/off current ratio of 4.0 × 10^6 and superior stability under gate-bias and drain-bias stress.展开更多
基金Science&Technology Department of Sichuan Province(2022YFQ0041,2022NSFSC1725,2023NSFSC0214)China Agriculture Research System(CARS-07-B-1)+2 种基金The National Natural Science Foundation of China(32160428)Innovative Training Program for College Students(202311079040,S202311079112,CDUCX2023550)Undergraduate Education and Teaching Reform Project of Chengdu University(cdjgb2022186).
文摘Aluminum (Al) toxicity is a considerable factor limiting crop yield and biomass in acidic soil. Tartary buckwheatgrowing in acidic soil may suffer from Al poisoning. Here, we investigated the influence of Al stress on the growthof tartary buckwheat seedling roots, and the alleviation of Al stress by silicon (Si), as has been demonstrated inmany crops. Under Al stress, root growth (total root length, primary root length, root tips, root surface area, androot volume) was significantly inhibited, and Al and malondialdehyde (MDA) accumulated in the root tips. At thesame time, catalase (CAT) and ascorbate peroxidase activities, polyphenols, flavonoids, and 1,1-diphenyl-2-picrylhydrazyl(DPPH) and 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) free-radical scavenging abilitywere significantly decreased. After the application of Si, root growth, Al accumulation, and oxidative damage wereimproved. Compared to Al-treated seedlings, the contents of ·O2− and MDA decreased by 29.39% and 25.22%,respectively. This was associated with Si-induced increases in peroxidase and CAT enzyme activity, flavonoidcompounds, and free-radical scavenging (DPPH and ABTS). The application of Si therefore has positive effectson Al toxicity in tartary buckwheat roots by reducing Al accumulation in the roots and maintaining oxidationhomeostasis.
基金financially supported by the Fundamental Research Funds for the Central Universities (No. FRF-IC-18-006)
文摘The production of low-temperature reheated grain-oriented silicon steel is mainly based on the acquired inhibitor method.Due to the additional nitriding process,a high nitrogen content exists in the oxide layer,which changes the structure of the oxide layer.In this study,the structure of the surface oxide layer after nitriding was analyzed by scanning electron microscopy(SEM),electron back-scattered diffraction(EBSD),glow discharge spectrometry(GDS),and X-ray diffraction(XRD).The size and orientation of ferritic grains in the oxide layer were characterized,and the distribution characteristics of the key elements along the thickness direction were determined.The results show that the oxide layer of the steel sample mainly comprised particles of Fe2SiO4 and spherical and lamellar SiO2,and Fe4N and fcc-Fe phases were also detected.Moreover,the size and orientation of ferritic grains in the oxide layer were different from those of coarse matrix ferritic grains beneath the oxide layer;however,some ferritic grains exhibited same orientations as those in the neighboring matrix.Higher nitrogen content was detected in the oxide layer than that in the matrix beneath the oxide layer.The form of nitrogen enrichment in the oxide layer was analyzed,and the growth mechanism of ferritic grains during the oxide layer formation is proposed.
文摘An active anode material for Li-ion batteries was synthesized using a simple mechanochemical process to minimize the large change in Si volume observed during charge-discharge operation and to compensate for the associated irreversible loss of Li or irreversible capacity loss, which are obstacles to achieve high-performance electrochemical properties during charge-discharge. The composite was mechanochemically milled with Si, lithium oxide, and copper oxide as raw materials;the composite contains Si nanoparticles, amorphous silicon monoxide, and Si-Li or Si-Cu alloy compounds, and it exhibits improved electrochemical properties. In particular, this composite achieved a better capacity retention, higher coulombic efficiency (over 100%), and longer cycling performance than Si alone, indicating considerable optimization of the electrical and ionic conductivity in the composite. The developed method allowed for control of the Li content to compensate for the lack of Li ions in the composite, and the cycling performance was optimized using the Cu alloy, oxide, and Li compounds within the composite.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60536030,61036002,60776024,60877035 and 61036009)National High Technology Research and Development Program of China(Grant Nos.2007AA04Z329 and 2007AA04Z254)
文摘A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35 μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit visible to near infra-red (NIR) light (the spectrum ranges from 500 nm to 1000 nm) in reverse bias avalanche breakdown mode with working voltage between 8.35 V-12 V and emit NIR light (the spectrum ranges from 900 nm to 1300 nm) in the forward injection mode with working voltage below 2 V. An apparent modulation effect on the light intensity from the polysilicon gate is observed in the forward injection mode. Furthermore, when the gate oxide is broken down, NIR light is emitted from the polysilicon/oxide/silicon structure. Optoelectronic characteristics of the device working in different modes are measured and compared. The mechanisms behind these different emissions are explored.
基金Funded by the Shanghai Leading Academic Discipline Project(B502)the Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application(Soochow University)
文摘Nanocomposites(PMSEPE/Q8M8^H) were prepared via solution blending of octakis(dimethylsiloxy)octasilsesquoixane(Q8M8^H) into poly(dimethylsilyleneethynylenephenyleneethynyle ne)(PMSEPE). PMSEPE/Q8M8^H nanocomposites were characterized by Fourier transform infrared(FT-IR) spectroscopy, rheological measurement, differential scanning calorimetry(DSC), scanning electron microscopy(SEM) and thermal gravimetric analysis(TGA). The experimental results show that the hydrosilylation reaction in PMSEPE/Q8M8^H nanocomposites occurs slowly exceeding 180 ℃. PMSEPE/Q8M8^H nanocomposites can be cured at temperatures less than 260 ℃ and the cube structure of Q8M8^H keeps stable during the curing process. POSS domains are evenly dispersed in the cured nanocomposite. However, serious aggregation of POSS occurs at 15% Q8M8^H content. The thermal and thermooxidative stabilities of PMSEPE/Q8M8^H nanocomposites obviously depend on the content of Q8M8^H. The incorporation of Q8M8^H can effectively enhance the thermal and thermooxidative stabilities of cured PMSEPE. PMSEPE/Q8M8^H nanocomposites can be the candidates for applications in high temperature environment.
文摘Photoluminescence (PL) characteristics of Tb-doped silicon rich oxide (SRO) films prepared by DC-sputtering and post-annealing processes were studied. The silicon richness of the SRO film could be controlled by varying the sputtering power and oxygen concentration in the sputtering chamber. PL emission from the as-deposited sample was found to be composed of Th^3 + intra 4f transition-related emission and the silicon nano particle-related broad bandwidth emission. Thermal annealing could significantly improve the material properties as well as the PL signals. PL properties depended strongly upon the annealing scheme and silicon richness. Annealing at high temperatures (900- 1050℃) enhanced Tbrelated emission and suppressed the silicon nano particle-related emission. For samples with different silicon richness, annealing at 950 ℃ was found to produce higher PL signals than at other temperatures. It was attributed more to lifetime quenching than to concentration quenching. Electroluminescent (EL) devices with a capacitor structure were fabricated, the optimized process condition for the EL device was found to be different from that of PL emission. Among the annealing schemes that were used, wet oxidation was found to improve device performance the most, whereas, dry oxidation was found to improve material property the most. Wet oxidation allowed the breakdown electrical field to increase significantly and to reach above 10 mV·cm^-1. The EL spectra showed a typical Th^3+ emission, agreeing well with the PL spectra. The I-V measurements indicated that for 100 nm thick film, the Fowler-Nordheim tunneling started at an electrical field of around 6 mV·cm^-1 and the light emission became detectable at a current density of around 10-4 A·cm^-2 and higher. Strong electroluminescence light emission was detected when the electrical field was close to 10 mV·cm^-1.
基金the National Natural Science Foundation of China(No.50632050)
文摘Nafion/Silicon oxide composite membranes were produced via in situ sol-gel reaction of tetraethylorthosilicate (TEOS) in Nafion membranes. The physicochemical properties of the membranes were studied by FT-IR,TG-DSC and tensile strength. The results show that the silicon oxide is compatible with the Nation membrane and the thermo stability of Nation/Silicon oxide composite membrane is higher than that of Nation membrane. Furthermore, the tensile strength of Nation/Silicon oxide composite membrane is similar to that of the Nation membrane. The proton conductivity of Nation/Silicon oxide composite membrane is higher than that of Nation membrane. When the Nation/Silicon oxide composite membrane was employed as an electrolyte in H2/O2 PEMFC, a higher current density value (1 000 mA/cm^2 at 0.38 V) than that of the Nafion1135 membrane (100 mA/cm^2 at 0.04 V) was obtained at 110 ℃.
基金Funded partially by the National Basic Research Program of China(No.2011CBA00700)
文摘In this work, n-type amorphous silicon oxide thin films were deposited by RF-PECVD method using a gas mixture of SiH4, CO2, H2, and PHy The deposition rate, refractive index, band gap, crystalline volume fraction, and conductivity of the silicon oxide thin films were determined and analyzed. The film with refractive index of 1.99, band gap of 2.6eV and conductivity of 10-7 S/cm was obtained, which was suitable for the intermediate reflector layer.
文摘1. Introduction Thermal oxidation of silicon monocrystalis a very important process in fabricationof metal--oxide--semiconductor (MOS) devices.In recent years it has received great atten-tion. Various proposals for oxidation modeshave been made by different groups.Now most of the authors working in thisfield hold the view that the oxidation rateof silicon obeys a typical parabolic rule,that is, the oxidation reaction is controlledby diffusion. The experimental data inRef. can be taken and a kinetic curve
文摘A new method for determination of trace silicon in high purity lanthanum oxide by using electrothermal vaporization (ETV) ICP AES with polytetrafluoroethylene(PTFE) slurry as a fluorinating reagent has been proposed. Under the optimized experimental conditions, the fluorination reactions of analyte(Si) and matrix(La) with PTFE in the graphite furnace took place at high temperature, and the fractional volatilily between Si and La was observed. Based on this principle the matrix interference could be eliminated. The detection limit of Si was 4.0 μg·L -1 , and the RSD was 3.4%( C =0.2 mg·L -1 , n =10). The procedure proposed has been applied successfully to determine trace Si in La 2O 3 without any chemical pre treatment.
基金the High Technology Research and Development Programme of China.
文摘In the present paper,a silicon nitride-based composite processed with rare-earth oxidesadditives is presented.Its bend strength can be maintained at a value as high as 1000 MPafrom 1000 to 1370℃ and the fracture toughness measures 9-10 MPa·m<sup>1/2</sup>.The static fa-tigue behavior at 1370℃ of this material is also encouraging.Besides,two another α′/β′sialon composites doped with rare-earth oxides are also described.The effects of processingparameters on the microstructure and the properties of the materials are discussed in somedetails.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61974161 and 11474324)。
文摘The magnetic properties of single crystals Si,Sr Ti O_(3),La Al O_(3),Mg O,and(La,Sr)(Al,Ta)O_(3)were investigated systematically.Three origins of the magnetizations of these crystals,namely,an intrinsic diamagnetic,a paramagnetic,and a ferromagnetic contribution,have been found to influence the magnetic signals measured on the crystals,in some important application scenarios such crystals being served as substrates with the magnetic thin film epitaxially grown on.Quantitative analyses methodologies were developed and thorough investigations were performed on the crystals with the intrinsic materials parameters thus revealed,especially that the intrinsic diamagnetic susceptibility differential dχdia/d T were identified quantitatively for the first time in Sr Ti O_(3),La Al O_(3),Mg O,and(La,Sr)(Al,Ta)O_(3).The paramagnetic contribution is found to be the key in terms of the magnetic properties of the crystals,which in turn is in fact a consequence of the 3d impurities doping inside the crystal.All the intrinsic materials parameters are given in this paper as datasets,the datasets are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00028.
文摘Objective:To investigate the protective and therapeutic role of ginseng against silicon dioxide nanoparticles(SiO2NPs)-induced toxicity in the lungs.Methods:Sixty male rats were divided into five groups(n=12/group);group 1 was used as a control,group 2 received ginseng,group 3 was treated with SiO2NPs,and group 4 was pretreated with ginseng one week before SiO2NPs,while group 5 was given SiO2NPs one week before supplementation with ginseng.Animals were treated with both ginseng and SiO2NPs orally for five weeks.Real-time PCR was used to measure gene expression.Besides,DNA damage and cell cycle changes were determined by comet assay and flow cytometry,respectively.Histological study was also done to assess the effect of ginseng on SiO2NPs-induced toxicity.Results:SiO2NPs increased lipid peroxidation and decreased the activities of antioxidant enzymes.SiO2NPs induced apoptosis in lung tissues as revealed by upregulation of Bax and caspase 3 and downregulation of Bcl-2 as well as the induction of DNA damage.SiO2NPs also caused inflammation as indicated by upregulation of the inflammation-related genes[interleukin 1 beta(IL-1β),tumor necrosis factor-alpha(TNF-α),nuclear factor kappa B(NF-κB),cyclooxygenase 2(COX2),and transforming growth factor-beta 1(TGFβ1)]as well as cell cycle arrest in the G0/G1 phase of lung cells.Moreover,histopathological examination proved the biochemical and molecular perturbations that occurred due to SiO2NPs toxicity.However,ginseng alleviated SiO2NPs-induced toxicity in rat lung.Conclusions:Ginseng has a potent preventive and therapeutic effect and could be used in the treatment of SiO2NPs-induced pulmonary toxicity.
文摘Based on the quantum confinement-luminescence center model, to ensembles of spherical silicon nanocrystals (nc-Si) containing two kinds of luminescence centers (LCs) in the layers surrounding the nc-Si, the relationship between the photoluminescence (PL) and the thickness of the layer is studied with the excitation energy flux density as a parameter. When there is no layer surrounding the nc-Si, the electron-heavy hole pair can only recombine inside the nc-Si, then the PL blueshift with reducing particle sizes roughly accords with the rule predicted by the quantum confinement model of Canham. When there presences a layer, some of the carriers may tunnel into it and recombine outside the nc-Si at the LCs to emit visible light. The thicker the layer is, the higher the radiative recombination rate occurred outside the nc-Si will be. When the central scale of the nc-Si is much smaller than the critical scale, the radiative recombination rate outside the nc-Si dominates, and visible PL will be possible for some nc-Si samples with big average radius, greater than 4 nm, for example. When there is only one kind of LC in the layer, the PL peak position does not shift with reducing particle sizes. All these conclusions are in accord with the experimental results. When there are two or more kinds of LCs in the layer, the PL peak position energy and intensity swing with reducing particle sizes.
文摘Visible light-sensitive photocatalyst was developed by combining n-type silicon (n-Si) and tungsten trioxide (WO3, n-Si/WO3), yielding an ohmic contact in between. In this system, the ohmic contact acted as an electron-and-hole mediator for the transfer of electrons and holes in the conduction band (CB) of WO3 and in the valence band (VB) of n-Si, respectively. Utilizing thus- constructed n-Si/WO3, the decomposition of 2-propanolto CO2 via acetone was achieved under visible light irradiation, by the contribution of holes in the VB of WO3 to decompose 2-propanol and the consumption of electrons in the CB of n-Si to reduce O2. The combination of p-type Si (p-Si) and WO3 (p-Si/ WO3), not the ohmic contact but the rectifying contact, was much less effective, compared to n-Si/WO3.
基金MA and LS are grateful to the Rowe Family Endowment Fund,and QH acknowledges Tang Fellowship.The financial support from the U.S.National Science Foundation(NSF)with the award number CMMI-1660572 is acknowledged.Further,the discussion of TEM images with Dr.Satyanarayana Emani is appreciated.The use of the Center for Nanoscale Materials,an Office of Science user facility,was supported by the U.S.Department of Energy,Office of Science,Office of Basic Energy Sciences,under Contract No.DE-AC02-06CH11357.
文摘Silicon/graphite(Si/Gr)nanocomposites with controlled void spaces and encapsulated by a carbon shell(Si/Gr@void@C)are synthesized by utilizing high-energy ball milling to reduce micron-sized particles to nanoscale,followed by carbonization of polydopamine(PODA)to form a carbon shell,and finally partial etching of the nanostructured Si core by NaOH solution at elevated temperatures.In particular,the effects of ball milling time and NaOH etching temperature on the electrochemical properties of Si/Gr@void@C are investigated.Increasing the ball milling time results in the improved specific capacity of Si-based anodes.Carbon coating further enhances the specific capacity and capacity retention over charge/discharge cycles.The best cycle stability is achieved after partial etching of the Si core inside Si/Gr@void@C particles at either 70 or 80C,leading to little or no capacity decay over 130 cycles.However,it is found that both carbon coating and NaOH etching processes cause some surface oxidation of the nanostructured Si particles derived from high-energy ball milling.The surface oxidation of the nanostructured Si results in decreases in specific capacity and should be minimized in future studies.The mechanistic understanding developed in this study paves the way to further improve the electrochemical performance of Si/Gr@void@C nanocomposites in future.
文摘In systems in atomic and nano scales such as clusters or agglomerates constituted of particles from a few to less than one hundred of atoms, quantum confinement effects are very important. Their optical and electronic properties are often dependent on the size of the systems and the way in which the atoms in these clusters are bonded. Generally, these nano-structures display optical and electronic properties significantly different of those found in corresponding bulk materials. Silicon agglomerates found in Silicon Rich Oxide (SRO) films have optical properties, which have reported as depended directly on nano-crystal size. Furthermore, the room temperature photoluminescence (PL) of Silicon Rich Oxides (SRO) has repeatedly generated a huge interest due to their possible applications in optoelectronic devices. However, a plausible emission mechanism has not yet widespread acceptance of the scientific community. In this research, we employed the Density Functional Theory with a functional B3LYP and a basis set 6 - 31G* to calculate the optical and electronic properties of small (six to ten silicon atoms) and medium size clusters of silicon (constituted of eleven to fourteen silicon atoms). With the theoretical calculation of the structural and optical properties of silicon clusters, it is possible to evaluate the contribution of silicon agglomerates in the luminescent emission mechanism experimentally found in thin SRO films.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.60876027 and 60976066)the National Science Fund for Distinguished Young Scholars of China (Grant No.60925015)
文摘A one-dimensional continuous analytic potential solution to a generic oxide-silicon^xide system is developed. With the analytic solution, the potential distribution in the silicon film is predicted. A physics-based relation between surface potentials is also derived and then applied to the generic oxide-silicon-oxide metal oxide-semiconductor field-effect transistors (MOSFETs) for the calculation of surface potentials
文摘A kind of new nano composite with ultraviolet (UV) ray resistance and high temperature stability was prepared by in-situ polymerization in low temperature. Polysulfonamide (PSA) was synthesized with 4, 4'-diaminodiphenyl sulfone (DDS) and terephthaloyl chloride (TPC) in the common solvent N, N-Dimethyl- -acetamide (DMAc). Nano filler is a certain nano titanium oxide modified by silicon oxide (TMS), which plays the role of UV resistance additives. Properties of the novel composite materials were characterized by Atomic Force microscopy (AFM), thermal gravimetric Analysis (TGA) and Ultraviolet Spectroscopy. AFM had showed the sizes and distributions of TMS particles in the nanocomposite. Ultraviolet Spectroscopy for the nanocomposites showed a large absorption in UV band. TGA showed the decomposition temperature was increased over ten degrees with 0.5% wt TMS for this nanocomposite compared with pure PSA.
基金supported by the National Natural Science Foundation of China(Grant Nos.61076113 and 61274085)the Natural Science Foundation of Guangdong Province(Grant No.2016A030313474)the University Development Fund(Nanotechnology Research Institute,Grant No.00600009)of the University of Hong Kong,China
文摘Si-doped zinc oxide(SZO) thin films are deposited by using a co-sputtering method,and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures.The effects of silicon content on the optical transmittance of the SZO thin film and electrical properties of the SZO TFT are investigated.Moreover,the electrical performances and bias-stress stabilities of the single- and dual-active-layer TFTs are investigated and compared to reveal the effects of the Si doping and dual-active-layer structure.The average transmittances of all the SZO films are about 90% in the visible light region of 400 nm-800 nm,and the optical band gap of the SZO film gradually increases with increasing Si content.The Si-doping can effectively suppress the grain growth of ZnO,revealed by atomic force microscope analysis.Compared with that of the undoped ZnO TFT,the off-state current of the SZO TFT is reduced by more than two orders of magnitude and it is 1.5 × 10^-12 A,and thus the on/off current ratio is increased by more than two orders of magnitude.In summary,the SZO/ZnO TFT with dual-active-layer structure exhibits a high on/off current ratio of 4.0 × 10^6 and superior stability under gate-bias and drain-bias stress.