期刊文献+
共找到24,989篇文章
< 1 2 250 >
每页显示 20 50 100
High corrosion and wear resistant electroless Ni–P gradient coatings on aviation aluminum alloy parts 被引量:1
1
作者 Bo Wang Jiawei Li +2 位作者 Zhihui Xie Gengjie Wang Gang Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期155-164,共10页
A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were... A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni–P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90°and was not corroded visually after 500 h of neutral salt spray test at 35℃. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments. 展开更多
关键词 aluminum alloy ELECTROLESS nickel coating CORROSION ADHESION
下载PDF
Review on laser directed energy deposited aluminum alloys 被引量:1
2
作者 Tian-Shu Liu Peng Chen +7 位作者 Feng Qiu Hong-Yu Yang Nicholas Tan Yew Jin Youxiang Chew Di Wang Ruidi Li Qi-Chuan Jiang Chaolin Tan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期84-131,共48页
Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstrea... Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined. 展开更多
关键词 additive manufacturing laser directed energy deposition(LDED) aluminum alloys PRINTABILITY aluminum matrix composite auxiliary fields mechanical properties
下载PDF
Impact of cooling rate on exfoliation corrosion resistance of a Li-containing 7xxx aluminum alloy
3
作者 JIANG Ke-da LIAO Ze-xin +2 位作者 CHEN Ming-yang LIU Sheng-dan TANG Jian-guo 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2225-2236,共12页
The impact of cooling rate after solution heat treatment on exfoliation corrosion resistance of a Li-containing 7xxx aluminum alloy was investigated by accelerated immersion and electrochemical impedance spectroscopy ... The impact of cooling rate after solution heat treatment on exfoliation corrosion resistance of a Li-containing 7xxx aluminum alloy was investigated by accelerated immersion and electrochemical impedance spectroscopy test,optical microscope,electron backscatter diffraction and scanning transmission electron microscope.With the decrease of cooling rate from 1700℃/s to 4℃/s,exfoliation corrosion resistance of the aged specimens decreases with rating changing from EA to EC and the maximum corrosion depth increasing from about 169.4μm to 632.1μm.Exfoliation corrosion tends to develop along grain boundaries in the specimens with cooling rates higher than about 31℃/s and along both grain boundaries and sub-grain boundaries in the specimens with lower cooling rates.The reason has been discussed based on the changes of the microstructure and microchemistry at grain boundaries and sub-grain boundaries due to slow cooling. 展开更多
关键词 7xxx aluminum alloy cooling rate exfoliation corrosion microstructure
下载PDF
Simulation of Dynamic Recrystallization in 7075 Aluminum Alloy Using Cellular Automaton
4
作者 赵晓东 SHI Dongxing +3 位作者 李亚杰 QIN Fengming CHU Zhibing YANG Xiaorong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期425-435,共11页
The evolution of microstructure during hot deformation is key to achieving good mechanical properties in aluminum alloys.We have developed a cellular automaton(CA) based model to simulate the microstructural evolution... The evolution of microstructure during hot deformation is key to achieving good mechanical properties in aluminum alloys.We have developed a cellular automaton(CA) based model to simulate the microstructural evolution in 7075 aluminum alloy during hot deformation.Isothermal compression tests were conducted to obtain material parameters for 7075 aluminum alloy,leading to the establishment of models for dislocation density,nucleation of recrystallized grains,and grain growth.Integrating these aspects with grain topological deformation,our CA model effectively predicts flow stress,dynamic recrystallization(DRX) volume fraction,and average grain size under diverse deformation conditions.A systematic comparison was made between electron back scattered diffraction(EBSD) maps and CA model simulated under different deformation temperatures(573 to 723 K),strain rates(0.001 to 1 s^(-1)),and strain amounts(30% to 70%).These analyses indicate that large strain,high temperature,and low strain rate facilitate dynamic recrystallization and grain refinement.The results from the CA model show good accuracy and predictive capability,with experimental error within 10%. 展开更多
关键词 cellular automaton dynamic recrystallization 7075 aluminum alloy hot compression
下载PDF
Effect of quenching cooling rate on residual stress and microstructure evolution of 6061 aluminum alloy
5
作者 HUANG Ke YI You-ping +4 位作者 HUANG Shi-quan HE Hai-lin LIU Jie HUA Hong-en TANG Yun-jian 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2167-2180,共14页
In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using ... In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using hole-drilling and crack compliance methods,respectively.Then,the processability of the quenched samples was evaluated at cryogenic temperatures.The mechanical properties of the as-aged samples were assessed,and microstructure evolution was analyzed.The surface residual stresses of samples W30℃,W60℃and W100℃is−178.7,−161.7 and−117.2 MPa,respectively along x-direction,respectively;and−191.2,−172.1 and−126.2 MPa,respectively along y-direction.The sample quenched in boiling water displaying the lowest residual stress(~34%and~60%reduction in the surface and core).The generation and distribution of quenching residual stress could be attributed to the lattice distortion gradient.Desirable plasticity was also exhibited in the samples with relatively low quenching cooling rates at cryogenic temperatures.The strengthes of the as-aged samples are 291.2 to 270.1 MPa as the quenching water temperature increase from 30℃to 100℃.Fine and homogeneous β"phases were observed in the as-aged sample quenched with boiling water due to the clusters and Guinier-Preston zones(GP zones)premature precipitated during quenching process. 展开更多
关键词 6061 aluminum alloy residual stress cooling rate cryogenic cooling mechanical properties microstructure evolution
下载PDF
Silicon Mitigates Aluminum Toxicity of Tartary Buckwheat by Regulating Antioxidant Systems
6
作者 Anyin Qi Xiaonan Yan +10 位作者 Yuqing Liu Qingchen Zeng Hang Yuan Huange Huang Chenggang Liang Dabing Xiang Liang Zou Lianxin Peng Gang Zhao Jingwei Huang Yan Wan 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第1期1-13,共13页
Aluminum (Al) toxicity is a considerable factor limiting crop yield and biomass in acidic soil. Tartary buckwheatgrowing in acidic soil may suffer from Al poisoning. Here, we investigated the influence of Al stress on... Aluminum (Al) toxicity is a considerable factor limiting crop yield and biomass in acidic soil. Tartary buckwheatgrowing in acidic soil may suffer from Al poisoning. Here, we investigated the influence of Al stress on the growthof tartary buckwheat seedling roots, and the alleviation of Al stress by silicon (Si), as has been demonstrated inmany crops. Under Al stress, root growth (total root length, primary root length, root tips, root surface area, androot volume) was significantly inhibited, and Al and malondialdehyde (MDA) accumulated in the root tips. At thesame time, catalase (CAT) and ascorbate peroxidase activities, polyphenols, flavonoids, and 1,1-diphenyl-2-picrylhydrazyl(DPPH) and 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) free-radical scavenging abilitywere significantly decreased. After the application of Si, root growth, Al accumulation, and oxidative damage wereimproved. Compared to Al-treated seedlings, the contents of ·O2− and MDA decreased by 29.39% and 25.22%,respectively. This was associated with Si-induced increases in peroxidase and CAT enzyme activity, flavonoidcompounds, and free-radical scavenging (DPPH and ABTS). The application of Si therefore has positive effectson Al toxicity in tartary buckwheat roots by reducing Al accumulation in the roots and maintaining oxidationhomeostasis. 展开更多
关键词 Tartary buckwheat aluminum stress silicon root growth oxidative stress
下载PDF
Effect of Sc on Al_(3)Fe phase and mechanical properties of as-cast AA5052 aluminum alloy
7
作者 Yang Li Qing Yu +3 位作者 Feng-feng Chen Jia-wen He Hong-mei Yang Meng-nie Li 《China Foundry》 SCIE EI CAS CSCD 2024年第3期257-264,共8页
The AA5052 aluminum alloy is widely used in automobile and aerospace manufacturing,and with the development of light-weight alloys,it is required that these materials exhibit better mechanical properties.Previous stud... The AA5052 aluminum alloy is widely used in automobile and aerospace manufacturing,and with the development of light-weight alloys,it is required that these materials exhibit better mechanical properties.Previous studies have demonstrated that the addition of Sc to aluminum alloys can improve both the microstructure and properties of the alloys.In this study,the effect of Sc on the Fe-rich phase and properties of the AA5052 aluminum alloy was studied by adding 0%,0.05%,0.2%,and 0.3%Sc.The results show that with the increase of Sc,the coarse needle-like Fe-rich phase gradually transforms into Chinese-script and then nearly spherical particles,reduce the size of Fe-rich phase,and refine the grain with increase of high angle grain boundaries(HAGBs).These microstructure changes enhance the strength of the AA5052 alloy through Sc addition.The ductility of the alloy is obviously improved because the addition of a lower amount of Sc changes the morphology of Fe-rich phase from needle-like into a Chinese-script,and it is subsequently reduced as a result of significant increase in HAGBs with increasing Sc content. 展开更多
关键词 AA5052 aluminum alloy Al3Fe phase mechanical properties grain boundary
下载PDF
Effect of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy
8
作者 Xian-wen YANG Ling-ying YE +1 位作者 Yong ZHANG Quan-shi CHENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2415-2430,共16页
The effects of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy extruded bar were investigated through various analyses,including electrical conductivity,mechanical properties... The effects of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy extruded bar were investigated through various analyses,including electrical conductivity,mechanical properties,local corrosion properties,and slow strain rate tensile stress corrosion tests.Microstructure characterization techniques such as metallographic microscopy,scanning electron microscopy(SEM),and transmission electron microscopy(TEM)were also employed.The results indicate that the tensile strength of the alloy produced by T6I6 aging is similar to that produced by T6I4 aging,and it even exceeds 700 MPa.Furthermore,the yield strength increases by 52.7 MPa,reaching 654.8 MPa after T6I6 aging treatment.The maximum depths of intergranular corrosion(IGC)and exfoliation corrosion(EXCO)decrease from 116.3 and 468.5μm to 89.5 and 324.3μm,respectively.The stress corrosion factor also decreases from 2.1%to 1.6%.These findings suggest that the alloy treated with T6I6 aging exhibits both high strength and excellent stress corrosion cracking resistance.Similarly,when the alloy is treated with T6I4,T6I6 and T6I7 aging,the sizes of grain boundary precipitates(GBPs)are found to be 5.2,18.4,and 32.8 nm,respectively.The sizes of matrix precipitates are 4.8,5.7 and 15.7 nm,respectively.The atomic fractions of Zn in GBPs are 9.92 at.%,8.23 at.%and 6.87 at.%,respectively,while the atomic fractions of Mg are 12.66 at.%,8.43 at.%and 7.00 at.%,respectively.Additionally,the atomic fractions of Cu are 1.83 at.%,2.47 at.%and 3.41 at.%,respectively. 展开更多
关键词 7A75 aluminum alloy interrupted aging aging precipitation behavior mechanical properties intergranular corrosion exfoliation corrosion stress corrosion cracking
下载PDF
Effect of process parameters on the morphology of aluminum/copper alloy lap joints by red and blue hybrid laser welding
9
作者 宋曜祥 肖梦智 +4 位作者 黄德才 张瑞华 尹燕 茹恩光 吴怡霖 《China Welding》 CAS 2024年第2期23-30,共8页
In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduce... In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduced for welding.T2 copper and 6063 aluminum thin plates were lap welded by coaxial dual-beam laser welding.The morphology of weld cross section was compared to explore the influence of process parameters on the formation of lap joints.The microstructure characteristics of the weld zone were observed and compared by optical microscope.The results show that the addition of laser beam swing can eliminate the internal pores of the weld.With the increase of the swing width,the weld depth decreases,and the weld width increases first and then decreases.The influence of welding speed on the weld cross section morphology is similar to that of swing width.With the increase of welding speed,the weld width increases first and then decreases,while the weld depth decreases all the time.This is because that the red laser is used as the main heat source to melt the base metals,with the increase of red laser power,the weld depth increases.As an auxiliary laser source,blue laser reduces the total energy consumption,consequently,the effective heat input increases and the spatter is restrained effectively.As a result,the increase of red laser power has an enhancement effect on the weld width and weld depth.When the swing width is 1.2 mm,the red laser power is 550 W,the blue laser power is 500 W,and the welding speed is 35 mm/s,the weld forming is the best.The lap joint of T2 copper and 6063 aluminum alloy thin plate can be connected stably with the hybrid of blue laser.The effect rules of laser beam swing on the weld formation were obtained,which improved the quality of the joints. 展开更多
关键词 laser welding aluminum/copper alloy dual beam process parameters weld morphology
下载PDF
Microstructure and mechanical properties of stationary shoulder friction stir welding joint of 2A14-T62 aluminum alloy
10
作者 邓建峰 王博 +3 位作者 王生希 郭伟强 黄智恒 费文潘 《China Welding》 CAS 2024年第2期31-38,共8页
2A14-T62 butt joint was successfully welded by stationary shoulder friction stir welding(SSFSW)method.The results showed that using a pin with small shoulder could broaden the process window,and under a rotation speed... 2A14-T62 butt joint was successfully welded by stationary shoulder friction stir welding(SSFSW)method.The results showed that using a pin with small shoulder could broaden the process window,and under a rotation speed of 2000 r/min and welding speed of 30 mm/min,joint with smooth surface,small reduction in thickness and little inner defects was obtained.The weld nugget zone was approx-imately circular,which was a unique morphology for SSFSW.The heat-affected zone(HAZ)and thermo-mechanically affected zone(TMAZ)were both quite narrow due to the lower heat input and slight mechanical action of the stationary shoulder.The fraction of high angle grain boundaries(HAGBs)exhibited a“W”shape along horizontal direction(from advancing side to retreating side),and the minim-um value located at HAZ.The average ultimate tensile strength and elongation of the joint were 325 MPa and 4.5%,respectively,with the joint efficiency of 68.3%.The joint was ductile fractured and the fracture surface contained two types of dimples morphology in different re-gions of the joint.Microhardness distribution in the joint exhibited a“W”shape,and the difference along the thickness direction was negli-gible.The joint had strong stress corrosion cracking susceptibility,and the slow stain rate tensile strength was 139 MPa.Microcrack and Al2O3 particulates were observed at the fracture surface. 展开更多
关键词 2A14-T62 aluminum alloy stationary shoulder friction stir welding microstructure mechanical property stress corrosion cracking
下载PDF
Influence of Non-Natural Ageing Temperature on the Microstructural Characteristics and Mechanical Properties of Cast Aluminum 6063 Alloy
11
作者 Oluwole Oladele Ayodele Adedeke +1 位作者 Olajesu Olanrewaju Samuel Olusunle 《Journal of Minerals and Materials Characterization and Engineering》 2024年第2期91-99,共9页
This research considered the effect of non-natural aging on the microstructural characteristics and mechanical properties of as-cast aluminum 6063 alloys. The samples were developed through a sand casting process and ... This research considered the effect of non-natural aging on the microstructural characteristics and mechanical properties of as-cast aluminum 6063 alloys. The samples were developed through a sand casting process and machined into tensile and impact test samples before carrying out solution heat treatment at 550?C (0.83 T<sub>m</sub>) on two parts of the samples while retaining one part as the control. The two parts were further divided into sets denoted A and B and were aged at 180?C (0.27 T<sub>m</sub>) and 160?C (0.24 T<sub>m</sub>), respectively, for 12 hours. The results showed that sample A has the optimal yield strength and ultimate tensile strength of 192 and 206 MPa, respectively. Likewise, the sample gave the highest impact strength value of about 9.63 J/mm<sup>2</sup>. The observed results were supported by the optical micrograph, which revealed that the sample has evenly dispersed precipitates in its microstructure. This is deemed responsible for the observed increase in strength of the sample. 展开更多
关键词 aluminum alloy Non-Natural Ageing Mechanical Properties Microstructural Features
下载PDF
Influence of Production Sequence of Aluminum Alloy Hot Rolling on Strip Surface Quality
12
作者 Hui Song Weixuan Jiang 《Frontiers of Metallurgical Industry》 2024年第1期12-14,共3页
With the intensification of market competition in the aluminum alloy strip processing industry,it is dif-ficult to control the mass production of the same specifications,which is bound to affect the hot rolling produc... With the intensification of market competition in the aluminum alloy strip processing industry,it is dif-ficult to control the mass production of the same specifications,which is bound to affect the hot rolling production.This paper studied the effect of the hot rolling order of aluminum alloy on the surface quality of strip,such as roll printing,color difference,anodic oxidation,etc.,reasonable discharge sequence and corresponding optimization measures were formulated. 展开更多
关键词 hot rolling production sequence surface quality aluminum alloy chromate treatment
下载PDF
Effects of silicon content on microstructure and stress corrosion cracking resistance of 7050 aluminum alloy 被引量:12
13
作者 佘欢 储威 +2 位作者 疏达 王俊 孙宝德 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2307-2313,共7页
Evolution of microstructure and stress corrosion cracking (SCC) susceptibility of 7050 aluminum alloy with 0.094%, 0.134% and 0.261% Si (mass fraction) in T7651 condition have been investigated. The results show t... Evolution of microstructure and stress corrosion cracking (SCC) susceptibility of 7050 aluminum alloy with 0.094%, 0.134% and 0.261% Si (mass fraction) in T7651 condition have been investigated. The results show that the area fraction of Mg2Si increases from 0.16% to 1,48% and the size becomes coarser, while the area fraction of the other coarse phases including Al2CuMg, Mg(Al,Cu,Zn)2 and A17Cu2Fe decreases from 2.42% to 0.78% with Si content increasing from 0.094% to 0.261%. The tensile strength and elongation of 7050-T7651 alloys is decreased with the increase of Si content by slow strain rate test (SSRT) in ambient air. However, electrical conductivity is improved and SCC susceptibility is reduced with the increase of Si content by SSRT in corrosion environment with 3.5% NaCl solution. 展开更多
关键词 7050 aluminum alloy silicon content MICROSTRUCTURE stress corrosion cracking resistance
下载PDF
Microstructure and properties of electronic packaging box with high silicon aluminum-base alloy by semi-solid thixoforming 被引量:10
14
作者 贾琪瑾 刘俊友 +1 位作者 李艳霞 王文韶 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期80-85,共6页
The electronic packaging box with high silicon aluminum-base alloy was prepared by semi-solid thixoforming technique.The flow characteristic of the Si phase was analyzed.The microstructures of different parts of the b... The electronic packaging box with high silicon aluminum-base alloy was prepared by semi-solid thixoforming technique.The flow characteristic of the Si phase was analyzed.The microstructures of different parts of the box were observed by optical microscopy and scanning electron microscopy,and the thermophysical and mechanical properties of the box were tested.The results show that there exists the segregation phenomenon between the primary Si phase and the liquid phase during thixoforming,the liquid phase flows from the box,and the primary Si phase accumulates at the bottom of the box.The volume fraction of primary Si phase decreases gradually from the bottom to the walls.Accordingly,the thermal conductivities of bottom center and walls are 107.6 and 131.5 W/(m·K),the coefficients of thermal expansion(CTE) are 7.9×10-6 and 10.6×10-6 K-1,respectively.The flexural strength increases slightly from 167 to 180 MPa.The microstructures and properties of the box show gradient distribution overall. 展开更多
关键词 high silicon aluminum-base alloy electronic packaging semi-solid thixoforming thermal conductivity coefficient of thermal expansion
下载PDF
Cutting performance of multilayer diamond coated silicon nitride inserts in machining aluminum-silicon alloy 被引量:8
15
作者 陈乃超 孙方宏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期1985-1992,共8页
Aluminum-silicon (Al-Si) alloy is very difficult to machine and diamond tools are considered by far the best choice for the machining of these materials. Experimental results in the machining of the Al-Si alloy with... Aluminum-silicon (Al-Si) alloy is very difficult to machine and diamond tools are considered by far the best choice for the machining of these materials. Experimental results in the machining of the Al-Si alloy with diamond coated inserts are presented. Considering the fact that high adhesive strength and fine surface morphology play an importance role in the applications of chemical vapor deposition (CVD) diamond films, multilayer technique combining the hot filament CVD (HFCVD) method is proposed, by which multilayer diamond-coating on silicon nitride inserts is obtained, microcrystalline diamond (MCD)/ nanocrystalline diamond (NCD) film. Also, the conventional monolayer NCD and MCD coated inserts are produced for comparison. The as-deposited diamond films are characterized by field emission scanning electron microscopy (FE-SEM) and Raman spectrum. All the CVD diamond coated inserts and uncoated insert endure the aluminum-silicon alloy turning to estimate their cutting performances. Among all the tested inserts, the MCD/NCD coated insert exhibits the perfect behavior as tool wear due to its very low flank wear and no diamond peeling. 展开更多
关键词 aluminum-silicon alloy multilayer diamond films silicon nitride cutting performance
下载PDF
Effect of Thermal-cold Cycling Treatment on Mechanical Properties and Microstructure of 6061 Aluminum Alloy 被引量:1
16
作者 王会敏 LI Yanguang +2 位作者 GUO Chaobo CUI Guoming HUANG Shiquan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期677-681,共5页
The influence of thermal-cold cycling treatment on mechanical properties and microstructure of 6061 aluminum alloy was investigated by means of tensile test, optical microscopy(OM), X-ray diffraction(XRD) and transmis... The influence of thermal-cold cycling treatment on mechanical properties and microstructure of 6061 aluminum alloy was investigated by means of tensile test, optical microscopy(OM), X-ray diffraction(XRD) and transmission electron microscopy(TEM). The cryogenic treatment mechanism of the alloys was discussed. The results show that thermal-cold cycling treatment is beneficial since it produces a large number of dislocations and accelerates the ageing process of the alloy and yields the finer dispersed β" precipitates in the matrix. This variation of microstructural changes leads to more favorable mechanical properties than the other investigated states, while grain boundary precipitation is coarse and distributed discontinuously along grain boundaries, with a lower precipitation free zone(PEZ) on the both sides of precipitated phase. As a result, the tensile strength, elongation and conductivity of 6061 aluminum alloy after thermal-cold cycling treatment are 373.37 MPa, 17.2% and 28.2 MS/m, respectively. Compared with conventional T6 temper, the mechanical properties are improved significantly. 展开更多
关键词 thermal-cold cycling treatment MICROSTRUCTURES tensile properties aluminum alloys
下载PDF
Effects of Spinning Process on Intergranular Corrosion Behavior of 5A06 Aluminum Alloy 被引量:1
17
作者 张谦君 付永康 +4 位作者 ZHAO Wenlong 李青 ZHANG Rulin GUO Yong LI Rongbin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期231-236,共6页
Aluminum alloy tubes were prepared by tube spinning.The intergranular and electrochemical corrosion tests were used to investigate the intergranular corrosion behavior of the 5A06 aluminum alloy blank sample and the s... Aluminum alloy tubes were prepared by tube spinning.The intergranular and electrochemical corrosion tests were used to investigate the intergranular corrosion behavior of the 5A06 aluminum alloy blank sample and the spinning sample.Results showed that the intergranular corrosion resistance of the spinning sample was higher than that of the blank sample.In addition,the electrochemical corrosion resistance of the spinning sample was higher than that of the blank sample.The EDS maps indicated a uniform element distribution pattern of aluminum and magnesium.Moreover,the phase composition and lattice constant of the samples were obtained by XRD analysis.The differences in microstructure between the aluminum alloy subjected to the spinning process and the untreated aluminum alloy were determined by EBSD.The differences were mainly attributed to the complex interactions among grain size,dislocations and grain boundaries. 展开更多
关键词 spinning process 5A06 aluminum alloy intergranular corrosion EBSD
下载PDF
Fatigue crack propagation of 7050 aluminum alloy FSW joints after surface peening 被引量:1
18
作者 金玉花 陈永昇 +2 位作者 马悦铭 王希靖 郭廷彪 《China Welding》 CAS 2023年第1期18-26,共9页
The surface composite modification of the 7050 aluminum alloy friction stir-welded joints was performed by shot peening(SP)/multiple rotation rolling(MRR)and MRR/SP,and the fatigue performance of the nugget zone(NZ)wa... The surface composite modification of the 7050 aluminum alloy friction stir-welded joints was performed by shot peening(SP)/multiple rotation rolling(MRR)and MRR/SP,and the fatigue performance of the nugget zone(NZ)was investigated.The results demonstrated that the fatigue life of SP/MRR samples is longer than that of MRR/SP.On the plane 150μm below the surface.The grains with high angle grain boundary account for 71.5%and 34.3%for MRR/SP and SP/MRR samples,respectively.The crack propagation path of the MRR/SP is transgranular and intergranular,and it is intergranular for the MRR/SP.Multitudinous fatigue striations and some voids appeared at the fracture during the stable crack propagation stage.However,fatigue striations for SP/MRR are with smaller spacing,fewer holes,and smaller size under SP/MRR compared with fatigue fracture of MRR/SP.The differences in fatigue properties and fracture characteristics of the NZ are related to the microstructure after the two combined surface modifications. 展开更多
关键词 7050 aluminum alloy surface compound modification fatigue crack propagation weld nugget zone
下载PDF
Microstructure and properties of high silicon aluminum alloy with 2% Fe prepared by rheo-casting 被引量:6
19
作者 钟鼓 吴树森 +2 位作者 安萍 毛有武 李世钊 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第9期1603-1607,共5页
The morphology changes of both Fe-containing intermetallic compounds and the primary Si phase of Al-20Si-2Fe- 2Cu-0.4Mg-1.0Ni-0.5Mn (mass fraction, %) alloy produced by semi-solid rheo-diecasting were studied. The s... The morphology changes of both Fe-containing intermetallic compounds and the primary Si phase of Al-20Si-2Fe- 2Cu-0.4Mg-1.0Ni-0.5Mn (mass fraction, %) alloy produced by semi-solid rheo-diecasting were studied. The semi-solid slurry of high silicon aluminum alloy was prepared by direct ultrasonic vibration (DUV) which was imposed on the alloy near the liquidus temperature for about 2 rain. Then, standard test samples of 6.4 mm in diameter were formed by semi-solid rheo-diecasting. The results show that the DUV treatment suppresses the formation of needle-like ,β-Al5(Fe,Mn)Si phase, and the Fe-containing intermetallic compounds exist in the form of fine Al4(Fe, Mn)Si2 particles. Additionally, the primary Si grows up as fine and round particles with uniform distribution in α(Al) matrix of this alloy under DUV treatment. The tensile strengths of the samples at the room temperature and 573 K are 230 MPa and 145 MPa, respectively. The coefficient of thermal expansion (CTE) between 25 ℃ and 300 ℃ is 16.052 8×10^-6 ℃^-1, and the wear rate is 1.55%. The hardness of this alloy with 2% Fe reaches HB146.3. It is discovered that modified morphology and uniform distribution of the Fe-containing intermetallic compounds and the primary Si phase are the main reasons for reducing the CTE and increasing the wear resistance of this alloy. 展开更多
关键词 high silicon aluminum alloy ultrasonic vibration rheo-casting rnicrostructure mechanical properties
下载PDF
Microstructural analyses of aluminum–magnesium–silicon alloys welded by pulsed Nd: YAG laser welding 被引量:4
20
作者 Hossain Ebrahimzadeh Hassan Farhangi +1 位作者 Seyed Ali Asghar Akbari Mousavi Arman Ghahramani 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第5期660-668,共9页
Revealing grains and very fine dendrites in a solidified weld metal of aluminum–magnesium–silicon alloys is difficult and thus,there is no evidence to validate the micro-and meso-scale physical models for hot cracks... Revealing grains and very fine dendrites in a solidified weld metal of aluminum–magnesium–silicon alloys is difficult and thus,there is no evidence to validate the micro-and meso-scale physical models for hot cracks. In this research, the effect of preheating on the microstructure and hot crack creation in the pulsed laser welding of AA 6061 was investigated by an optical microscope and field emission electron microscopy. Etching was carried out in the gas phase using fresh Keller’s reagent for 600 s. The results showed that the grain size of the weld metal was proportional to the grain size of the base metal and was independent of the preheating temperature. Hot cracks passed the grain boundaries of the weld and the base metal. Lower solidification rates in the preheated samples led to coarser arm spacing;therefore, a lower cooling rate. Despite the results predicted by the micro and meso-scale models, lower cooling rates resulted in increased hot cracks. The cracks could grow in the weld metal after solidification;therefore, hot cracks were larger than predicted by the hot crack prediction models. 展开更多
关键词 ETCHING technique laser welding inter-dendritic SPACING GRAIN size aluminum–magnesium–silicon alloys hot crack formation model
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部