The monocrystalline silicon is a promising material that could be used in solar cells that convert light into electricity. Although the cost of ordinary silicon (Si) solar cells has decreased significantly over the pa...The monocrystalline silicon is a promising material that could be used in solar cells that convert light into electricity. Although the cost of ordinary silicon (Si) solar cells has decreased significantly over the past two decades, the conversion efficiency of these cells has remained relatively high. While solar cells have a great potential as a device of renewable energy, the high cost they incur per Watt continues to be a significant barrier to their widespread implementation. As a consequence, it is vital to conduct research into alternate materials that may be used in the construction of solar cells. The heterojunction solar cell (HJSC), which is based on n-type zinc oxide (n-ZnO) and p-type silicon (p-Si), is one of the numerous alternatives of the typical Si single homojunction solar cell. There are many deficiencies that can be found in the published research on n-ZnO/p-Si heterojunction solar cell. Inconsistencies in the stated value of open circuit voltage (V<sub>oc</sub>) of the solar cell are one example of deficiency. The absence of a full theoretical study to evaluate the potential of the solar cell structure is another deficiency that can be found in these researches. A lower value of experimentally obtained V<sub>OC</sub> in comparison to the theoretical prediction based on the band-gap between n-ZnO and p-Si. There needs to be more consensus among scientists regarding the optimal conditions for the growth of zinc oxide. Many software’s are available for simulating and optimizing the solar cells based on these parameters. For this purpose, in this dissertation, I provide computational results relevant to n-ZnO/p-Si HJSC to overcome deficiencies that have been identified. While modeling and simulating the potential of the solar cell structure with AFORS-HET, it is essential to consider the constraints that exist in the real world. AFORS-HET was explicitly designed to mimic the multilayer solar cell arrangement. In AFORS-HET, we can add up to seven layers for solar cell layout. By using this software, we can figure out the open circuit voltage (V<sub>OC</sub>), the short circuit current (J<sub>SC</sub>), the quantum efficiency (QE, %), the heterojunction energy band structure, and the power conversion efficiency (PCE).展开更多
The basic parameters of a-Si:H/c-Si heterojunction solar cells, such as layer thickness, doping concen- tration, a-Si:H/c-Si interface defect density, and the work functions of the transparent conducting oxide (TCO...The basic parameters of a-Si:H/c-Si heterojunction solar cells, such as layer thickness, doping concen- tration, a-Si:H/c-Si interface defect density, and the work functions of the transparent conducting oxide (TCO) and back surface field (BSF) layer, are crucial factors that influence the carrier transport properties and the efficiency of the solar cells. The correlations between the carrier transport properties and these parameters and the performance of a-Si:H/c-Si heterojunction solar cells were investigated using the AFORS-HET program. Through the analysis and optimization of a TCO/n-a-Si:H/i-a-Si:H/p-c-Si/p+-a-Si:H/Ag solar cell, a photoelectric conversion efficiency of 27.07% (Voc: 749 mV, Jsc: 42.86 mA/cm2, FF: 84.33%) was obtained through simulation. An in-depth understanding of the transport properties can help to improve the efficiency of a-Si:H/c-Si heterojunction solar cells, and provide useful guidance for actual heterojunction with intrinsic thin layer (HIT) solar cell manufacturing.展开更多
The ultraviolet(UV)light stability of silicon heterojunction(SHJ)solar cells should be addressed before large-scale production and applications.Introducing downshifting(DS)nanophosphors on top of solar cells that can ...The ultraviolet(UV)light stability of silicon heterojunction(SHJ)solar cells should be addressed before large-scale production and applications.Introducing downshifting(DS)nanophosphors on top of solar cells that can convert UV light to visible light may reduce UV-induced degradation(UVID)without sacrificing the power conversion efficiency(PCE).Herein,a novel composite DS nanomaterial composed of YVO_(4):Eu^(3+),Bi^(3+)nanoparticles(NPs)and AgNPs was synthesized and introduced onto the incident light side of industrial SHJ solar cells to achieve UV shielding.The YVO_(4):Eu^(3+),Bi^(3+)NPs and Ag NPs were synthesized via a sol-gel method and a wet chemical reduction method,respectively.Then,a composite structure of the YVO_(4):Eu^(3+),Bi^(3+)NPs decorated with Ag NPs was synthesized by an ultrasonic method.The emission intensities of the YVO_(4):Eu^(3+),Bi^(3+)nanophosphors were significantly enhanced upon decoration with an appropriate amount of~20 nm Ag NPs due to the localized surface plasmon resonance(LSPR)effect.Upon the introduction of LSPR-enhanced downshifting,the SHJ solar cells exhibited an~0.54%relative decrease in PCE degradation under UV irradiation with a cumulative dose of 45 k W h compared to their counterparts,suggesting excellent potential for application in UV-light stability enhancement of solar cells or modules.展开更多
Research on silicon-based tandem heterojunction solar cells (STHSC) incorporating metal oxides is one of the main directions for development of high-efficiency solar cells. In this work, the optical characteristics of...Research on silicon-based tandem heterojunction solar cells (STHSC) incorporating metal oxides is one of the main directions for development of high-efficiency solar cells. In this work, the optical characteristics of a STHSC consisting of a ZnO/Cu2O subcell on top of a silicon-based subcell were studied by optical modelling. Cu2O is a direct-gap p-type semiconductor which is attractive for application in solar cells due to its high absorptance of ultra-violet and visible light, nontoxicity, and low-cost producibility. Highly Al-doped ZnO and undoped Cu2O thin films were prepared on quartz substrates by magnetron sputter deposition. Thermal annealing of the Cu2O layer at 900°C enhances the electrical properties and reduces optical absorption, presumably as a result of increased grain size. Hall effect measurements show that the majority carrier (hole) mobility increases from 10 to 50 cm2/V×s and the resistivity decreases from 560 to 200 Ω×cm after annealing. A Cu2O absorber layer of 2 μm thickness will generate about 10 mA/cm2 of photocurrent under AM1.5G illumination. The optical analysis of the STHSC involved calculating the spectral curves for absorptance, transmittance, and reflectance for different thicknesses of the thin film layers constituting the ZnO/Cu2O subcell. The complex refractive indices of the thin films were derived from spectroscopic ellipsometry measurements and implemented in the simulation model. The lowest reflectance and highest transmittance for the ZnO/Cu2O subcell are obtained for a thickness of approximately 80 nm for both the top and bottom AZO layers. The SiNx anti-reflection coating for the c-Si bottom subcell must be optimized to accommodate the shift of the photon spectrum towards longer wavelengths. By increasing the thickness of the SiNx layer from 80 nm to 120 nm, the total reflectance for the STHSC device is reduced from 12.7% to 9.7%.展开更多
Electron transport layer(ETL)is pivotal to charge carrier transport for PSCs to reach the Shockley-Queisser limit.This study provides a fundamental understanding of heterojunction electron transport layers(ETLs)at the...Electron transport layer(ETL)is pivotal to charge carrier transport for PSCs to reach the Shockley-Queisser limit.This study provides a fundamental understanding of heterojunction electron transport layers(ETLs)at the atomic level for stable and efficient perovskite solar cells(PSCs).The bilayer structure of an ETL composed of SnO_(2) on TiO_(2) was examined,revealing a critical factor limiting its potential to obtain efficient performance.Alteration of oxygen vacancies in the TiO_(2) underlayer via an annealing process is found to induce manipulated band offsets at the interface between the TiO_(2) and SnO_(2) layers.In-depth electronic investigations of the bilayer structure elucidate the importance of the electronic properties at the interface between the TiO_(2) and SnO_(2) layers.The apparent correlation in hysteresis phenomena,including current density-voltage(J-V)curves,appears as a function of the type of band alignment.Density functional theory calculations reveal the intimate relationship between oxygen vacancies,deep trap states,and charge transport efficiency at the interface between the TiO_(2) and SnO_(2) layers.The formation of cascade band alignment via control over the TiO_(2) underlayer enhances device performance and suppresses hysteresis.Optimal performance exhibits a power conversion efficiency(PCE)of 23.45%with an open-circuit voltage(V_(oc))of 1.184 V,showing better device stability under maximum power point tracking compared with a staggered bilayer under one-sun continuous illumination.展开更多
Today,it has become an important task to modify existing traditional silicon-based solar cell factory to produce high-efficiency silicon-based heterojunction solar cells,at a lower cost.Therefore,the aim of this paper...Today,it has become an important task to modify existing traditional silicon-based solar cell factory to produce high-efficiency silicon-based heterojunction solar cells,at a lower cost.Therefore,the aim of this paper is to analyze CH_(3)NH_(3)PbI_(3) and ZnO materials as an emitter layer for p-type silicon wafer-based heterojunction solar cells.CH_(3)NH_(3)PbI_(3) and ZnO can be synthesized using the cheap Sol-Gel method and can form n-type semiconductor.We propose to combine these two materials since CH_(3)NH_(3)PbI_(3) is a great light absorber and ZnO has an optimal complex refractive index which can be used as antireflection material.The photoelectric parameters of n-CH_(3)NH_(3)PbI_(3)/p-Si,n-ZnO/p-Si,and n-Si/p-Si solar cells have been studied in the range of 20–200 nm of emitter layer thickness.It has been found that the short circuit current for CH_(3)NH_(3)PbI_(3)/p-Si and n-ZnO/p-Si solar cells is almost the same when the emitter layer thickness is in the range of 20–100 nm.Additionally,when the emitter layer thickness is greater than 100 nm,the short circuit current of CH_(3)NH_(3)PbI_(3)/p-Si exceeds that of n-ZnO/p-Si.The optimal emitter layer thickness for n-CH_(3)NH_(3)PbI_(3)/p-Si and n-ZnO/p-Si was found equal to 80 nm.Using this value,the short-circuit current and the fill factor were estimated around 18.27 mA/cm^(2) and 0.77 for n-CH_(3)NH_(3)PbI_(3)/p-Si and 18.06 mA/cm^(2) and 0.73 for n-ZnO/p-Si.Results show that the efficiency of n-CH_(3)NH_(3)PbI_(3)/p-Si and n-ZnO/p-Si solar cells with an emitter layer thickness of 80 nm are 1.314 and 1.298 times greater than efficiency of traditional n-Si/p-Si for the same sizes.These findings will help perovskites materials to be more appealing in the PV industry and accelerate their development to become a viable alternative in the renewable energy sector.展开更多
Perovskite solar cells(PSCs)offer low costs and high power conversion efficiency.However,the lack of long-term stability,primarily stemming from the interfacial defects and the sus-ceptible metal electrodes,hinders th...Perovskite solar cells(PSCs)offer low costs and high power conversion efficiency.However,the lack of long-term stability,primarily stemming from the interfacial defects and the sus-ceptible metal electrodes,hinders their practical application.In the past few years,two-dimensional(2D)materials(e.g.,graphene and its derivatives,transitional metal dichalcogenides,MXenes,and black phosphorus)have been identified as a promising solution to solving these problems because of their dangling bond-free surfaces,layer-dependent electronic band structures,tunable functional groups,and inherent compactness.Here,recent progress of 2D material toward efficient and stable PSCs is summarized,including its role as both interface materials and electrodes.We discuss their beneficial effects on perovskite growth,energy level alignment,defect passivation,as well as blocking external stimulus.In particular,the unique properties of 2D materials to form van der Waals heterojunction at the bottom interface are emphasized.Finally,perspectives on the further development of PSCs using 2D materials are provided,such as designing high-quality van der Waals heterojunction,enhancing the uniformity and coverage of 2D nanosheets,and developing new 2D materials-based electrodes.展开更多
A multi-dimensional conductive heterojunction structure,composited by TiO2,SnO2,and Ti3C2TX MXene,is facilely designed and applied as electron transport layer in efficient and stable planar perovskite solar cells.Base...A multi-dimensional conductive heterojunction structure,composited by TiO2,SnO2,and Ti3C2TX MXene,is facilely designed and applied as electron transport layer in efficient and stable planar perovskite solar cells.Based on an oxygen vacancy scramble effect,the zero-dimensional anatase TiO2 quantum dots,surrounding on two-dimensional conductive Ti3C2TX sheets,are in situ rooted on three-dimensional SnO2 nanoparticles,constructing nanoscale TiO2/SnO2 heterojunctions.The fabrication is implemented in a controlled lowtemperature anneal method in air and then in N2 atmospheres.With the optimal MXene content,the optical property,the crystallinity of perovskite layer,and internal interfaces are all facilitated,contributing more amount of carrier with effective and rapid transferring in device.The champion power conversion efficiency of resultant perovskite solar cells achieves 19.14%,yet that of counterpart is just 16.83%.In addition,it can also maintain almost 85%of its initial performance for more than 45 days in 30–40%humidity air;comparatively,the counterpart declines to just below 75%of its initial performance.展开更多
In this paper,we present a facile approach to enhance the efficiency and stability of perovskite solar cells(PSCs)by incorporating perovskite with microporous indium-based metal–organic framework[In12O(OH)16(H2O)5(bt...In this paper,we present a facile approach to enhance the efficiency and stability of perovskite solar cells(PSCs)by incorporating perovskite with microporous indium-based metal–organic framework[In12O(OH)16(H2O)5(btc)6]n(In-BTC)nanocrystals and forming heterojunction light-harvesting layer.The interconnected micropores and terminal oxygen sites of In-BTC allow the preferential crystallization of perovskite inside the regular cavities,endowing the derived films with improved morphology/crystallinity and reduced grain boundaries/defects.Consequently,the In-BTC-modified PSC yields enhanced fill factor of 0.79 and power conversion efficiency(PCE)of 20.87%,surpassing the pristine device(0.76 and 19.52%,respectively).More importantly,over 80%of the original PCE is retained after 12 days of exposure to ambient environment(25°C and relative humidity of^65%)without encapsulation,while only about 35%is left to the pristine device.展开更多
A novel structure of Ag gridlSiN_(x)/n+-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:HlTCO/Ag grid was designed to increase the ef-ficiency of bifacial amorphous/crystalline silicon-based solar cells and reduce the rear material c...A novel structure of Ag gridlSiN_(x)/n+-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:HlTCO/Ag grid was designed to increase the ef-ficiency of bifacial amorphous/crystalline silicon-based solar cells and reduce the rear material consumption and production cost.The simulation results show that the new structure obtains higher efficiency compared with the typical bifa-cial amorphous/crystalline silicon-based solar cell because of an increase in the short-circuit current(J_(sc)),while retaining the advantages of a high open-circuit voltage,low temperature coefficient,and good weak-light performance.Moreover,real cells composed of the novel structure with dimensions of 75 mm×75 mm were fabricated by a special fabrication recipe based on industrial processes.Without parameter optimization,the cell efficiency reached 21.1%with the J_(sc)of 41.7 mA/cm^(2).In addition,the novel structure attained 28.55%potential conversion efficiency under an illumination of AM 1.5 G,100 mW/cm^(2).We conclude that the configuration of the Ag grid/SiN_(x)/n^(+)-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:H/TCO/Ag grid is a promising structure for high efficiency and low cost.展开更多
Recent developments in acceptor–donor–acceptor(A–D–A) type non-fullerene acceptors have led to substantial improvements in bulk-heterojunction polymer solar cells efficiency. The device performance strongly depend...Recent developments in acceptor–donor–acceptor(A–D–A) type non-fullerene acceptors have led to substantial improvements in bulk-heterojunction polymer solar cells efficiency. The device performance strongly depends on photoactive layer morphology, as the molecular packing, donor–acceptor interface and phase separation significantly affect the charge-transfer states and charge carrier dynamics. In this review, we start with a brief introduction of the techniques most effectively utilized to characterize multiphase morphology. Then, we summarize recent progress in A–D–A type acceptors, with the emphasis on understanding the molecular structure–morphology–performance relationships. Finally, an outlook on correlating morphological characteristics with photovoltage losses is presented for further improving device performance.展开更多
Flexible Cu2ZnSn(S,Se)4(CZTSSe)solar cells show great potential applications due to low-cost,nontoxicity,and stability.The device performances under an especial open circuit voltage(VOC)are limited by the defect recom...Flexible Cu2ZnSn(S,Se)4(CZTSSe)solar cells show great potential applications due to low-cost,nontoxicity,and stability.The device performances under an especial open circuit voltage(VOC)are limited by the defect recombination of CZTSSe/CdS heterojunction interface.We improve the deposition technique to obtain compact CdS layers without any pinholes for flexible CZTSSe solar cells on Mo foils.The efficiency of the device is improved from 5.7%to 6.86%by highquality junction interface.Furthermore,aiming at the S loss of CdS film,the S source concentration in deposition process is investigated to passivate the defects and improve the CdS film quality.The flexible Mo-foil-based CZTSSe solar cells are obtained to possess a 9.05%efficiency with a VOC of 0.44 V at an optimized S source concentration of 0.68 mol/L.Systematic physical measurements indicate that the S source control can effectively suppress the interface recombination and reduce the VOCdeficit.For the CZTSSe device bending characteristics,the device efficiency is almost constant after1000 bends,manifesting that the CZTSSe device has an excellent mechanical flexibility.The effective improvement strategy of CdS deposition is expected to provide a new perspective for promoting the conversion efficiency of CZTSSe solar cells.展开更多
Solar cells that combine single-crystalline silicon (Si) with graphene (G) have been widely researched in order to develop next-generation photovoltaic devices. However, the power conversion efficiency (PCE) of ...Solar cells that combine single-crystalline silicon (Si) with graphene (G) have been widely researched in order to develop next-generation photovoltaic devices. However, the power conversion efficiency (PCE) of G/Si solar cell without chemical doping is commonly low due to the relatively high resistance of graphene. In this work, through combining graphene with carbon nanotube (CNT) networks, we fabricated three kinds of hybrid nanocarbon film/Si heterojunction solar cells in order to increase the PCE of the graphene based Si solar cell. We investigated the characteristics of different nanocarbon film/Si solar cells and found that their performance depends on the heterojunctions. Specifically, a doping-free G-CNT/Si solar cell demonstrated a high PCE of 7.9%, which is nearly equal to the combined value of two individuals (G/Si and CNT/Si). This high efficiency is attributed to the synergistic effect of graphene and CNTs, and can be further increased to 9.1% after applying a PMMA antireflection coating. This study provides a potential way to further improve the Si based heterojunction solar cells.展开更多
We use the method of device simulation to study the losses and influences of geminate and bimolecular recombinations on the performances and properties of the bulk heterojunction organic solar cells. We find that a fr...We use the method of device simulation to study the losses and influences of geminate and bimolecular recombinations on the performances and properties of the bulk heterojunction organic solar cells. We find that a fraction of electrons(holes)in the device are collected by anode(cathode). The direction of the corresponding current is opposite to the direction of photocurrent. And the current density increases with the bias increasing but decreases as bimolecular recombination(BR)or geminate recombination(GR) intensity increases. The maximum power, short circuit current, and fill factor display a stronger dependence on GR than on BR. While the influences of GR and BR on open circuit voltage are about the same.Our studies shed a new light on the loss mechanism and may provide a new way of improving the efficiency of bulk heterojunction organic solar cells.展开更多
The indium-tin oxide (ITO) film as the antireflection layer and front electrodes is of key importance to obtaining high efficiency Si heterojunction (HJ) solar cells. To obtain high transmittance and low resistivi...The indium-tin oxide (ITO) film as the antireflection layer and front electrodes is of key importance to obtaining high efficiency Si heterojunction (HJ) solar cells. To obtain high transmittance and low resistivity ITO films by direct-current (DC) magnetron sputtering, we studied the impacts of the ITO film deposition conditions, such as the oxygen flow rate, pressure, and sputter power, on the electrical and optical properties of the ITO films. ITO films of resistivity of 4 x 10-4 ~.m and average transmittance of 89% in the wavelength range of 380-780 nm were obtained under the optimized conditions: oxygen flow rate of 0.1 sccm, pressure of 0.8 Pa, and sputtering power of 110 W. These ITO films were used to fabricate the single-side HJ solar cell without an intrinsic a-Si:H layer. However, the best HJ solar cell was fabricated with a lower sputtering power of 95 W, which had an efficiency of 11.47%, an open circuit voltage (Voc) of 0.626 V, a filling factor (FF) of 0.50, and a short circuit current density (Jsc) of 36.4 mA/cm2. The decrease in the performance of the solar cell fabricated with high sputtering power of 110 W is attributed to the ion bombardment to the emitter. The Voc was improved to 0.673 V when a 5 nm thick intrinsic a-Si:H layer was inserted between the (p) a-Si:H and (n) c-Si layer. The higher Voc of 0.673 V for the single-side HJ solar cell implies the excellent c-Si surface passivation by a-Si:H.展开更多
It is very important to understand why a small amount of alkali metal doping in Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)solar cells can improve the conversion efficiency.In this work,Na-doped CZTSSe is prepared by a simple soluti...It is very important to understand why a small amount of alkali metal doping in Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)solar cells can improve the conversion efficiency.In this work,Na-doped CZTSSe is prepared by a simple solution method,and then the effects on the surface properties of the absorber layer,the buffer layer growth,and the modifications of the solar cell performance induced by the Na doping are studied.The surface of the absorber layer is more Cu-depletion and less roughness due to the Na doping.In addition,the contact angle of the surface increases because of Na doping.As a consequence,the thickness of the CdS buffer layer is significantly reduced and the optical losses in the CdS buffer layer are decreased.The difference of quasi-Fermi levels(EFn-EFp) increases with a small amount of Na doping in the CZTSSe solar cell,so that open circuit voltage(VOC) increased significantly.This work offers new insights into the effects of Na doping on CZTSSe via a solution-based approach and provides a deeper understanding of the origin of the efficiency improvement of Na-doped CZTSSe thin film solar cells.展开更多
Crystalline silicon(c-Si)heterojunction(HJT)solar cells are one of the promising technologies for next-generation industrial high-efficiency silicon solar cells,and many efforts in transferring this technology to high...Crystalline silicon(c-Si)heterojunction(HJT)solar cells are one of the promising technologies for next-generation industrial high-efficiency silicon solar cells,and many efforts in transferring this technology to high-volume manufacturing in the photovoltaic(PV)industry are currently ongoing.Metallization is of vital importance to the PV performance and long-term reliability of HJT solar cells.In this review,we summarize the development status of metallization approaches for highefficiency HJT solar cells.For conventional screen printing technology,to avoid the degradation of the passivation properties of the amorphous silicon layer,a low-temperature-cured(<250℃)paste and process are needed.This process,in turn,leads to high line/contact resistances and high paste costs.To improve the conductivity of electrodes and reduce the metallization cost,multi-busbar,fine-line printing,and low-temperature-cured silver-coated copper pastes have been developed.In addition,several potential metallization technologies for HJT solar cells,such as the Smart Wire Contacting Technology,pattern transfer printing,inkjet/FlexTrailprinting,and copper electroplating,are discussed in detail.B ased on the summary,the potential and challenges of these metallization technologies for HJT solar cells are analyzed.展开更多
The effect of the valence band tail width on the open circuit voltage of P3HT:PCBM bulk heterojunction solar cell is investigated by using the AMPS-1D computer program. An effective medium model with exponential vale...The effect of the valence band tail width on the open circuit voltage of P3HT:PCBM bulk heterojunction solar cell is investigated by using the AMPS-1D computer program. An effective medium model with exponential valence and conduction band tail states is used to simulate the photovoltaic cell. The simulation result shows that the open circuit voltage depends Iinearly on the logarithm of the generation rate and the slope depends on the width of the valence band tail. The open circuit voltage decreases with the increasing width of the band tail. The dark and light ideality factors increase with the width of the valence band tail.展开更多
Amorphous carbon (a-C) thin films have been synthesized by microwave (MW) surface wave plasma (SWP) chemical vapor deposition (CVD) on n-type silicon and quartz substrates, aiming at the application of the films for p...Amorphous carbon (a-C) thin films have been synthesized by microwave (MW) surface wave plasma (SWP) chemical vapor deposition (CVD) on n-type silicon and quartz substrates, aiming at the application of the films for photovoltaic solar cells. Argon, acetylene and trimethylboron were used as a carrier, source and dopant gases. Analytical methods such as X-ray photoelectron spectroscopy (XPS), Hall Effect measurement, JASCO V-570 UV/VIS/NIR spectroscopy, Raman spectroscopy, Transmission electron microscopy (TEM) and Solar simulator were employed to investigate chemical, optical, structural and electrical properties of the a-C films. Two types of solar cells of configuration p-C/n-Si and p-C/i-C/n-Si have been fabricated and their current-voltage characteristics under dark and illumination (AM 1.5, 100 mW/cm2) have been studied. The two solar cells showed rectifying curves under the dark condition confirming the heterojunction carbon based solar cell between p-C and n-Si. When illuminated by the solar simulator light the devices showed photovoltaic behavior. The heterojunction device (p-C/i-C/n-Si) having inserted intrinsic carbon film between p-C and n-Si exhibited significant enhancement of the conversation efficiency (0.167% to 2.349%) over the device (p-C/n-Si).展开更多
The effect of the parameters on the open-circuit voltage, V_(OC) of a-Si:H/c-Si heterojunction solar cells was explored by an analytical model. The analytical results show that V_(OC) increases linearly with the logar...The effect of the parameters on the open-circuit voltage, V_(OC) of a-Si:H/c-Si heterojunction solar cells was explored by an analytical model. The analytical results show that V_(OC) increases linearly with the logarithm of illumination intensity under usual illumination. There are two critical values of the interface state density(D_(it)) for the open-circuit voltage(V_(OC)), D_(it)^(crit,1) and D_(it)crit,2(a few 1010 cm^(-2)·e V^(-1)). V_(OC) decreases remarkably when D_(it) is higher than D_(it)^(crit,1). To achieve high V_(OC), the interface states should reduce down to a few 1010 cm^(-2)·e V^(-1). Due to the difference between the effective density of states in the conduction and valence band edges of c-Si, the open-circuit voltage of a-Si:H/c-Si heterojunction cells fabricated on n-type c-Si wafers is about 22 mV higher than that fabricated on p-type c-Si wafers at the same case. V_(OC) decreases with decreasing the a-Si:H doping concentration at low doping level since the electric field over the c-Si depletion region is reduced at low doping level. Therefore, the a-Si:H layer should be doped higher than a critical value of 5×10^(18) cm^(-3) to achieve high V_(OC).展开更多
文摘The monocrystalline silicon is a promising material that could be used in solar cells that convert light into electricity. Although the cost of ordinary silicon (Si) solar cells has decreased significantly over the past two decades, the conversion efficiency of these cells has remained relatively high. While solar cells have a great potential as a device of renewable energy, the high cost they incur per Watt continues to be a significant barrier to their widespread implementation. As a consequence, it is vital to conduct research into alternate materials that may be used in the construction of solar cells. The heterojunction solar cell (HJSC), which is based on n-type zinc oxide (n-ZnO) and p-type silicon (p-Si), is one of the numerous alternatives of the typical Si single homojunction solar cell. There are many deficiencies that can be found in the published research on n-ZnO/p-Si heterojunction solar cell. Inconsistencies in the stated value of open circuit voltage (V<sub>oc</sub>) of the solar cell are one example of deficiency. The absence of a full theoretical study to evaluate the potential of the solar cell structure is another deficiency that can be found in these researches. A lower value of experimentally obtained V<sub>OC</sub> in comparison to the theoretical prediction based on the band-gap between n-ZnO and p-Si. There needs to be more consensus among scientists regarding the optimal conditions for the growth of zinc oxide. Many software’s are available for simulating and optimizing the solar cells based on these parameters. For this purpose, in this dissertation, I provide computational results relevant to n-ZnO/p-Si HJSC to overcome deficiencies that have been identified. While modeling and simulating the potential of the solar cell structure with AFORS-HET, it is essential to consider the constraints that exist in the real world. AFORS-HET was explicitly designed to mimic the multilayer solar cell arrangement. In AFORS-HET, we can add up to seven layers for solar cell layout. By using this software, we can figure out the open circuit voltage (V<sub>OC</sub>), the short circuit current (J<sub>SC</sub>), the quantum efficiency (QE, %), the heterojunction energy band structure, and the power conversion efficiency (PCE).
基金supported by the National Natural Science Foundation of China(No.61076055)the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University(No.FDS-KL2011-04)+1 种基金the Zhejiang Provincial Science and Technology Key Innovation Team(No.2011R50012)the Zhejiang Provincial Key Laboratory(No.2013E10022)
文摘The basic parameters of a-Si:H/c-Si heterojunction solar cells, such as layer thickness, doping concen- tration, a-Si:H/c-Si interface defect density, and the work functions of the transparent conducting oxide (TCO) and back surface field (BSF) layer, are crucial factors that influence the carrier transport properties and the efficiency of the solar cells. The correlations between the carrier transport properties and these parameters and the performance of a-Si:H/c-Si heterojunction solar cells were investigated using the AFORS-HET program. Through the analysis and optimization of a TCO/n-a-Si:H/i-a-Si:H/p-c-Si/p+-a-Si:H/Ag solar cell, a photoelectric conversion efficiency of 27.07% (Voc: 749 mV, Jsc: 42.86 mA/cm2, FF: 84.33%) was obtained through simulation. An in-depth understanding of the transport properties can help to improve the efficiency of a-Si:H/c-Si heterojunction solar cells, and provide useful guidance for actual heterojunction with intrinsic thin layer (HIT) solar cell manufacturing.
基金supported by the National Natural Science Foundation of China (Grant Nos.52202276 and 51821002)the China Postdoctoral Science Foundation (Grant No.2022M712300)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No.22KJB480010)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘The ultraviolet(UV)light stability of silicon heterojunction(SHJ)solar cells should be addressed before large-scale production and applications.Introducing downshifting(DS)nanophosphors on top of solar cells that can convert UV light to visible light may reduce UV-induced degradation(UVID)without sacrificing the power conversion efficiency(PCE).Herein,a novel composite DS nanomaterial composed of YVO_(4):Eu^(3+),Bi^(3+)nanoparticles(NPs)and AgNPs was synthesized and introduced onto the incident light side of industrial SHJ solar cells to achieve UV shielding.The YVO_(4):Eu^(3+),Bi^(3+)NPs and Ag NPs were synthesized via a sol-gel method and a wet chemical reduction method,respectively.Then,a composite structure of the YVO_(4):Eu^(3+),Bi^(3+)NPs decorated with Ag NPs was synthesized by an ultrasonic method.The emission intensities of the YVO_(4):Eu^(3+),Bi^(3+)nanophosphors were significantly enhanced upon decoration with an appropriate amount of~20 nm Ag NPs due to the localized surface plasmon resonance(LSPR)effect.Upon the introduction of LSPR-enhanced downshifting,the SHJ solar cells exhibited an~0.54%relative decrease in PCE degradation under UV irradiation with a cumulative dose of 45 k W h compared to their counterparts,suggesting excellent potential for application in UV-light stability enhancement of solar cells or modules.
基金conducted under the research project“High-performance tandem heterojunction solar cells for specific applications(SOLHET)”,financially supported by the Research Council of Norway(RCN)and the Romanian Executive Agency for Higher Education,Research,Development and Innovation Funding(UEFISCDI)through the M-Era.net program.
文摘Research on silicon-based tandem heterojunction solar cells (STHSC) incorporating metal oxides is one of the main directions for development of high-efficiency solar cells. In this work, the optical characteristics of a STHSC consisting of a ZnO/Cu2O subcell on top of a silicon-based subcell were studied by optical modelling. Cu2O is a direct-gap p-type semiconductor which is attractive for application in solar cells due to its high absorptance of ultra-violet and visible light, nontoxicity, and low-cost producibility. Highly Al-doped ZnO and undoped Cu2O thin films were prepared on quartz substrates by magnetron sputter deposition. Thermal annealing of the Cu2O layer at 900°C enhances the electrical properties and reduces optical absorption, presumably as a result of increased grain size. Hall effect measurements show that the majority carrier (hole) mobility increases from 10 to 50 cm2/V×s and the resistivity decreases from 560 to 200 Ω×cm after annealing. A Cu2O absorber layer of 2 μm thickness will generate about 10 mA/cm2 of photocurrent under AM1.5G illumination. The optical analysis of the STHSC involved calculating the spectral curves for absorptance, transmittance, and reflectance for different thicknesses of the thin film layers constituting the ZnO/Cu2O subcell. The complex refractive indices of the thin films were derived from spectroscopic ellipsometry measurements and implemented in the simulation model. The lowest reflectance and highest transmittance for the ZnO/Cu2O subcell are obtained for a thickness of approximately 80 nm for both the top and bottom AZO layers. The SiNx anti-reflection coating for the c-Si bottom subcell must be optimized to accommodate the shift of the photon spectrum towards longer wavelengths. By increasing the thickness of the SiNx layer from 80 nm to 120 nm, the total reflectance for the STHSC device is reduced from 12.7% to 9.7%.
基金supported by the New&Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)granted financial resource from the Ministry of Trade,Industry&Energy(MOTIE),Republic of Korea(No.20213091010020)National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)(2020R1A2C1101085)+2 种基金the Korea Institute of Planning and Evaluation for Technology in Food,Agriculture and Forestry(IPET)and Korea Smart Farm R&D Foundation(KosFarm)through Smart Farm Innovation Technology Development Programfunded by the Ministry of Agriculture,Food and Rural Affairs(MAFRA)the Ministry of Science and ICT(MSIT),Rural Development Administration(RDA)(421036-03).
文摘Electron transport layer(ETL)is pivotal to charge carrier transport for PSCs to reach the Shockley-Queisser limit.This study provides a fundamental understanding of heterojunction electron transport layers(ETLs)at the atomic level for stable and efficient perovskite solar cells(PSCs).The bilayer structure of an ETL composed of SnO_(2) on TiO_(2) was examined,revealing a critical factor limiting its potential to obtain efficient performance.Alteration of oxygen vacancies in the TiO_(2) underlayer via an annealing process is found to induce manipulated band offsets at the interface between the TiO_(2) and SnO_(2) layers.In-depth electronic investigations of the bilayer structure elucidate the importance of the electronic properties at the interface between the TiO_(2) and SnO_(2) layers.The apparent correlation in hysteresis phenomena,including current density-voltage(J-V)curves,appears as a function of the type of band alignment.Density functional theory calculations reveal the intimate relationship between oxygen vacancies,deep trap states,and charge transport efficiency at the interface between the TiO_(2) and SnO_(2) layers.The formation of cascade band alignment via control over the TiO_(2) underlayer enhances device performance and suppresses hysteresis.Optimal performance exhibits a power conversion efficiency(PCE)of 23.45%with an open-circuit voltage(V_(oc))of 1.184 V,showing better device stability under maximum power point tracking compared with a staggered bilayer under one-sun continuous illumination.
基金supported by Fundamental Research Project of Uzbekistan(FZ-2020092973).
文摘Today,it has become an important task to modify existing traditional silicon-based solar cell factory to produce high-efficiency silicon-based heterojunction solar cells,at a lower cost.Therefore,the aim of this paper is to analyze CH_(3)NH_(3)PbI_(3) and ZnO materials as an emitter layer for p-type silicon wafer-based heterojunction solar cells.CH_(3)NH_(3)PbI_(3) and ZnO can be synthesized using the cheap Sol-Gel method and can form n-type semiconductor.We propose to combine these two materials since CH_(3)NH_(3)PbI_(3) is a great light absorber and ZnO has an optimal complex refractive index which can be used as antireflection material.The photoelectric parameters of n-CH_(3)NH_(3)PbI_(3)/p-Si,n-ZnO/p-Si,and n-Si/p-Si solar cells have been studied in the range of 20–200 nm of emitter layer thickness.It has been found that the short circuit current for CH_(3)NH_(3)PbI_(3)/p-Si and n-ZnO/p-Si solar cells is almost the same when the emitter layer thickness is in the range of 20–100 nm.Additionally,when the emitter layer thickness is greater than 100 nm,the short circuit current of CH_(3)NH_(3)PbI_(3)/p-Si exceeds that of n-ZnO/p-Si.The optimal emitter layer thickness for n-CH_(3)NH_(3)PbI_(3)/p-Si and n-ZnO/p-Si was found equal to 80 nm.Using this value,the short-circuit current and the fill factor were estimated around 18.27 mA/cm^(2) and 0.77 for n-CH_(3)NH_(3)PbI_(3)/p-Si and 18.06 mA/cm^(2) and 0.73 for n-ZnO/p-Si.Results show that the efficiency of n-CH_(3)NH_(3)PbI_(3)/p-Si and n-ZnO/p-Si solar cells with an emitter layer thickness of 80 nm are 1.314 and 1.298 times greater than efficiency of traditional n-Si/p-Si for the same sizes.These findings will help perovskites materials to be more appealing in the PV industry and accelerate their development to become a viable alternative in the renewable energy sector.
基金the financial support of the National Natural Science Foundation of China(Nos.U21A20171,12074245,and 52102281)National Key R&D Program of China(Nos.2021YFB3800068 and 2020YFB1506400)+1 种基金Shanghai Sailing Program(No.21YF1421600)Young Elite Scientists Sponsorship Program by China Association for Science and Technology(No.2021QNRC001).
文摘Perovskite solar cells(PSCs)offer low costs and high power conversion efficiency.However,the lack of long-term stability,primarily stemming from the interfacial defects and the sus-ceptible metal electrodes,hinders their practical application.In the past few years,two-dimensional(2D)materials(e.g.,graphene and its derivatives,transitional metal dichalcogenides,MXenes,and black phosphorus)have been identified as a promising solution to solving these problems because of their dangling bond-free surfaces,layer-dependent electronic band structures,tunable functional groups,and inherent compactness.Here,recent progress of 2D material toward efficient and stable PSCs is summarized,including its role as both interface materials and electrodes.We discuss their beneficial effects on perovskite growth,energy level alignment,defect passivation,as well as blocking external stimulus.In particular,the unique properties of 2D materials to form van der Waals heterojunction at the bottom interface are emphasized.Finally,perspectives on the further development of PSCs using 2D materials are provided,such as designing high-quality van der Waals heterojunction,enhancing the uniformity and coverage of 2D nanosheets,and developing new 2D materials-based electrodes.
基金supported by the Science & Technology Project of Anhui Province (16030701091)the Natural Science Research Project of Anhui Provincial Education Department (KJ2019A0030)+2 种基金the Support Project of Outstanding Young Talents in Anhui Provincial Universities (gxyqZD2018006)the National Natural Science Foundation of China(11704002, 31701323)the Anhui Provincial Natural Science Foundation (1908085QF251,1808085MF185)
文摘A multi-dimensional conductive heterojunction structure,composited by TiO2,SnO2,and Ti3C2TX MXene,is facilely designed and applied as electron transport layer in efficient and stable planar perovskite solar cells.Based on an oxygen vacancy scramble effect,the zero-dimensional anatase TiO2 quantum dots,surrounding on two-dimensional conductive Ti3C2TX sheets,are in situ rooted on three-dimensional SnO2 nanoparticles,constructing nanoscale TiO2/SnO2 heterojunctions.The fabrication is implemented in a controlled lowtemperature anneal method in air and then in N2 atmospheres.With the optimal MXene content,the optical property,the crystallinity of perovskite layer,and internal interfaces are all facilitated,contributing more amount of carrier with effective and rapid transferring in device.The champion power conversion efficiency of resultant perovskite solar cells achieves 19.14%,yet that of counterpart is just 16.83%.In addition,it can also maintain almost 85%of its initial performance for more than 45 days in 30–40%humidity air;comparatively,the counterpart declines to just below 75%of its initial performance.
基金National Natural Science Foundation of China(Grant No.21873025 and 21571042).
文摘In this paper,we present a facile approach to enhance the efficiency and stability of perovskite solar cells(PSCs)by incorporating perovskite with microporous indium-based metal–organic framework[In12O(OH)16(H2O)5(btc)6]n(In-BTC)nanocrystals and forming heterojunction light-harvesting layer.The interconnected micropores and terminal oxygen sites of In-BTC allow the preferential crystallization of perovskite inside the regular cavities,endowing the derived films with improved morphology/crystallinity and reduced grain boundaries/defects.Consequently,the In-BTC-modified PSC yields enhanced fill factor of 0.79 and power conversion efficiency(PCE)of 20.87%,surpassing the pristine device(0.76 and 19.52%,respectively).More importantly,over 80%of the original PCE is retained after 12 days of exposure to ambient environment(25°C and relative humidity of^65%)without encapsulation,while only about 35%is left to the pristine device.
基金Project supported by the Jiangxi Provincial Key Research and Development Foundation,China(Grant No.2016BBH80043)the Open Fund of Jiangsu Key Laboratory of Materials and Technology for Energy Conversion,China(Grant No.NJ20160032)the National Natural Science Foundation of China(Grant Nos.61741404,61464007,and 51561022)
文摘A novel structure of Ag gridlSiN_(x)/n+-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:HlTCO/Ag grid was designed to increase the ef-ficiency of bifacial amorphous/crystalline silicon-based solar cells and reduce the rear material consumption and production cost.The simulation results show that the new structure obtains higher efficiency compared with the typical bifa-cial amorphous/crystalline silicon-based solar cell because of an increase in the short-circuit current(J_(sc)),while retaining the advantages of a high open-circuit voltage,low temperature coefficient,and good weak-light performance.Moreover,real cells composed of the novel structure with dimensions of 75 mm×75 mm were fabricated by a special fabrication recipe based on industrial processes.Without parameter optimization,the cell efficiency reached 21.1%with the J_(sc)of 41.7 mA/cm^(2).In addition,the novel structure attained 28.55%potential conversion efficiency under an illumination of AM 1.5 G,100 mW/cm^(2).We conclude that the configuration of the Ag grid/SiN_(x)/n^(+)-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:H/TCO/Ag grid is a promising structure for high efficiency and low cost.
基金support by Research Grants Council of Hong Kong(Grant Nos.15246816 and 15218517)the funding for Project of Strategic Importance provided by the Hong Kong Polytechnic University(Project Code:1-ZE29)the Shenzhen Science and Technology Innovation Commission(Project no.JCYJ20170413154602102)
文摘Recent developments in acceptor–donor–acceptor(A–D–A) type non-fullerene acceptors have led to substantial improvements in bulk-heterojunction polymer solar cells efficiency. The device performance strongly depends on photoactive layer morphology, as the molecular packing, donor–acceptor interface and phase separation significantly affect the charge-transfer states and charge carrier dynamics. In this review, we start with a brief introduction of the techniques most effectively utilized to characterize multiphase morphology. Then, we summarize recent progress in A–D–A type acceptors, with the emphasis on understanding the molecular structure–morphology–performance relationships. Finally, an outlook on correlating morphological characteristics with photovoltage losses is presented for further improving device performance.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62074037,61574038,51961165108,and 51972332)the Natural Science Foundation of Fujian Province,China(Grant No.2017J01503)+2 种基金the Education and Scientific Research Project of Fujian Province,China(Grant No.JAT190010)the Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment,China(Grant No.SKLPEE-202011)Fuzhou University,China。
文摘Flexible Cu2ZnSn(S,Se)4(CZTSSe)solar cells show great potential applications due to low-cost,nontoxicity,and stability.The device performances under an especial open circuit voltage(VOC)are limited by the defect recombination of CZTSSe/CdS heterojunction interface.We improve the deposition technique to obtain compact CdS layers without any pinholes for flexible CZTSSe solar cells on Mo foils.The efficiency of the device is improved from 5.7%to 6.86%by highquality junction interface.Furthermore,aiming at the S loss of CdS film,the S source concentration in deposition process is investigated to passivate the defects and improve the CdS film quality.The flexible Mo-foil-based CZTSSe solar cells are obtained to possess a 9.05%efficiency with a VOC of 0.44 V at an optimized S source concentration of 0.68 mol/L.Systematic physical measurements indicate that the S source control can effectively suppress the interface recombination and reduce the VOCdeficit.For the CZTSSe device bending characteristics,the device efficiency is almost constant after1000 bends,manifesting that the CZTSSe device has an excellent mechanical flexibility.The effective improvement strategy of CdS deposition is expected to provide a new perspective for promoting the conversion efficiency of CZTSSe solar cells.
基金Project supported by the National Key R&D Program of China(Grant No.2018YFA0208402)the National Basic Research Program of China(Grant No.2012CB932302)+1 种基金the National Natural Science Foundation of China(Grant Nos.11634014,51172271,and 51372269)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA09040202)
文摘Solar cells that combine single-crystalline silicon (Si) with graphene (G) have been widely researched in order to develop next-generation photovoltaic devices. However, the power conversion efficiency (PCE) of G/Si solar cell without chemical doping is commonly low due to the relatively high resistance of graphene. In this work, through combining graphene with carbon nanotube (CNT) networks, we fabricated three kinds of hybrid nanocarbon film/Si heterojunction solar cells in order to increase the PCE of the graphene based Si solar cell. We investigated the characteristics of different nanocarbon film/Si solar cells and found that their performance depends on the heterojunctions. Specifically, a doping-free G-CNT/Si solar cell demonstrated a high PCE of 7.9%, which is nearly equal to the combined value of two individuals (G/Si and CNT/Si). This high efficiency is attributed to the synergistic effect of graphene and CNTs, and can be further increased to 9.1% after applying a PMMA antireflection coating. This study provides a potential way to further improve the Si based heterojunction solar cells.
基金Project supported by the Natural Science Foundation of Hebei Province,China(Grant No.A2012203016)the Science Fund from the Education Department of Hebei Province,China(Grant Nos.QN20131103 and Z2009114)+1 种基金the Doctor Foundation of Yanshan University,China(Grant No.B580)the Young Teachers’Research Project of Yanshan University,China(Grant No.13LGB028)
文摘We use the method of device simulation to study the losses and influences of geminate and bimolecular recombinations on the performances and properties of the bulk heterojunction organic solar cells. We find that a fraction of electrons(holes)in the device are collected by anode(cathode). The direction of the corresponding current is opposite to the direction of photocurrent. And the current density increases with the bias increasing but decreases as bimolecular recombination(BR)or geminate recombination(GR) intensity increases. The maximum power, short circuit current, and fill factor display a stronger dependence on GR than on BR. While the influences of GR and BR on open circuit voltage are about the same.Our studies shed a new light on the loss mechanism and may provide a new way of improving the efficiency of bulk heterojunction organic solar cells.
基金supported by the National High Technology Research and Development Program of China(Grant No.2011AA050501)
文摘The indium-tin oxide (ITO) film as the antireflection layer and front electrodes is of key importance to obtaining high efficiency Si heterojunction (HJ) solar cells. To obtain high transmittance and low resistivity ITO films by direct-current (DC) magnetron sputtering, we studied the impacts of the ITO film deposition conditions, such as the oxygen flow rate, pressure, and sputter power, on the electrical and optical properties of the ITO films. ITO films of resistivity of 4 x 10-4 ~.m and average transmittance of 89% in the wavelength range of 380-780 nm were obtained under the optimized conditions: oxygen flow rate of 0.1 sccm, pressure of 0.8 Pa, and sputtering power of 110 W. These ITO films were used to fabricate the single-side HJ solar cell without an intrinsic a-Si:H layer. However, the best HJ solar cell was fabricated with a lower sputtering power of 95 W, which had an efficiency of 11.47%, an open circuit voltage (Voc) of 0.626 V, a filling factor (FF) of 0.50, and a short circuit current density (Jsc) of 36.4 mA/cm2. The decrease in the performance of the solar cell fabricated with high sputtering power of 110 W is attributed to the ion bombardment to the emitter. The Voc was improved to 0.673 V when a 5 nm thick intrinsic a-Si:H layer was inserted between the (p) a-Si:H and (n) c-Si layer. The higher Voc of 0.673 V for the single-side HJ solar cell implies the excellent c-Si surface passivation by a-Si:H.
基金supported by the National Key R&D Program of China(2019YFB1503500,2018YFB1500200,2018YEE0203400)the Natural Science Foundation of China(U1902218,11774187)the 111 project(B16027)。
文摘It is very important to understand why a small amount of alkali metal doping in Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)solar cells can improve the conversion efficiency.In this work,Na-doped CZTSSe is prepared by a simple solution method,and then the effects on the surface properties of the absorber layer,the buffer layer growth,and the modifications of the solar cell performance induced by the Na doping are studied.The surface of the absorber layer is more Cu-depletion and less roughness due to the Na doping.In addition,the contact angle of the surface increases because of Na doping.As a consequence,the thickness of the CdS buffer layer is significantly reduced and the optical losses in the CdS buffer layer are decreased.The difference of quasi-Fermi levels(EFn-EFp) increases with a small amount of Na doping in the CZTSSe solar cell,so that open circuit voltage(VOC) increased significantly.This work offers new insights into the effects of Na doping on CZTSSe via a solution-based approach and provides a deeper understanding of the origin of the efficiency improvement of Na-doped CZTSSe thin film solar cells.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Crystalline silicon(c-Si)heterojunction(HJT)solar cells are one of the promising technologies for next-generation industrial high-efficiency silicon solar cells,and many efforts in transferring this technology to high-volume manufacturing in the photovoltaic(PV)industry are currently ongoing.Metallization is of vital importance to the PV performance and long-term reliability of HJT solar cells.In this review,we summarize the development status of metallization approaches for highefficiency HJT solar cells.For conventional screen printing technology,to avoid the degradation of the passivation properties of the amorphous silicon layer,a low-temperature-cured(<250℃)paste and process are needed.This process,in turn,leads to high line/contact resistances and high paste costs.To improve the conductivity of electrodes and reduce the metallization cost,multi-busbar,fine-line printing,and low-temperature-cured silver-coated copper pastes have been developed.In addition,several potential metallization technologies for HJT solar cells,such as the Smart Wire Contacting Technology,pattern transfer printing,inkjet/FlexTrailprinting,and copper electroplating,are discussed in detail.B ased on the summary,the potential and challenges of these metallization technologies for HJT solar cells are analyzed.
文摘The effect of the valence band tail width on the open circuit voltage of P3HT:PCBM bulk heterojunction solar cell is investigated by using the AMPS-1D computer program. An effective medium model with exponential valence and conduction band tail states is used to simulate the photovoltaic cell. The simulation result shows that the open circuit voltage depends Iinearly on the logarithm of the generation rate and the slope depends on the width of the valence band tail. The open circuit voltage decreases with the increasing width of the band tail. The dark and light ideality factors increase with the width of the valence band tail.
文摘Amorphous carbon (a-C) thin films have been synthesized by microwave (MW) surface wave plasma (SWP) chemical vapor deposition (CVD) on n-type silicon and quartz substrates, aiming at the application of the films for photovoltaic solar cells. Argon, acetylene and trimethylboron were used as a carrier, source and dopant gases. Analytical methods such as X-ray photoelectron spectroscopy (XPS), Hall Effect measurement, JASCO V-570 UV/VIS/NIR spectroscopy, Raman spectroscopy, Transmission electron microscopy (TEM) and Solar simulator were employed to investigate chemical, optical, structural and electrical properties of the a-C films. Two types of solar cells of configuration p-C/n-Si and p-C/i-C/n-Si have been fabricated and their current-voltage characteristics under dark and illumination (AM 1.5, 100 mW/cm2) have been studied. The two solar cells showed rectifying curves under the dark condition confirming the heterojunction carbon based solar cell between p-C and n-Si. When illuminated by the solar simulator light the devices showed photovoltaic behavior. The heterojunction device (p-C/i-C/n-Si) having inserted intrinsic carbon film between p-C and n-Si exhibited significant enhancement of the conversation efficiency (0.167% to 2.349%) over the device (p-C/n-Si).
基金Project(11374094)supported by the National Natural Science Foundation of ChinaProject(2013HZX23)supported by Natural Science Foundation of Hunan University of Technology,ChinaProject(2015JJ3060)supported by Natural Science Foundation of Hunan Province of China
文摘The effect of the parameters on the open-circuit voltage, V_(OC) of a-Si:H/c-Si heterojunction solar cells was explored by an analytical model. The analytical results show that V_(OC) increases linearly with the logarithm of illumination intensity under usual illumination. There are two critical values of the interface state density(D_(it)) for the open-circuit voltage(V_(OC)), D_(it)^(crit,1) and D_(it)crit,2(a few 1010 cm^(-2)·e V^(-1)). V_(OC) decreases remarkably when D_(it) is higher than D_(it)^(crit,1). To achieve high V_(OC), the interface states should reduce down to a few 1010 cm^(-2)·e V^(-1). Due to the difference between the effective density of states in the conduction and valence band edges of c-Si, the open-circuit voltage of a-Si:H/c-Si heterojunction cells fabricated on n-type c-Si wafers is about 22 mV higher than that fabricated on p-type c-Si wafers at the same case. V_(OC) decreases with decreasing the a-Si:H doping concentration at low doping level since the electric field over the c-Si depletion region is reduced at low doping level. Therefore, the a-Si:H layer should be doped higher than a critical value of 5×10^(18) cm^(-3) to achieve high V_(OC).