The interfacial reactions in partial transient liquid-phase bonding of Si3N4 ceramics with Ti/Ni/Ti interlayers were studied by means of scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and...The interfacial reactions in partial transient liquid-phase bonding of Si3N4 ceramics with Ti/Ni/Ti interlayers were studied by means of scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffractometry (XRD). It was shown that the interfacial structure of Si3N4/TiN/Ti5Si3+Ti5Si4 + Ni3Si/ (NiTi ) /Ni3Ti/ Ni was formed after bonding. The activation energies for TiN layer and the mixed reaction layer of Ti5Si3 + Ti5Si4 + Ni3Si are 546. 8 kJ/mol and 543. 9 kJ/mol, respectively. The formation and transition processes of interface layer sequence in the joint were clarified by diffusion path. An important characteristic, which is different from the conventional brazing and soid-state diffusion bonding, has been found, i. e., during the partial transient liquid-phase bonding, not only the reaction layers which have formed grow, but also the diffusion path in the subsequent reaction changes because of the remarkable variation of the concentration on the metal side.展开更多
AgCu/Ni composite interlayer was utilized to join SiO2 glass ceramic (74. 52% SiO2-23. 40% Al2 03 -2. 08 % K2 O, wt. % ) and Ti-6Al-4V alloy by eutectic reaction. Interface structures of the joints were identified b...AgCu/Ni composite interlayer was utilized to join SiO2 glass ceramic (74. 52% SiO2-23. 40% Al2 03 -2. 08 % K2 O, wt. % ) and Ti-6Al-4V alloy by eutectic reaction. Interface structures of the joints were identified by means of TEM analysis. This joining method contains three characteristic processes, which are the melting of AgCu eutectic alloy, eutectic reaction between interlayer and Ti-6Al-4V base material and active reaction of element Ti to SiO2 glass ceramic. It is different from traditional active brazing because active element Ti totally dissolves from Ti-6Al-4 V and reacts with SiO2 glass ceramic. SiO2 glass ceramic can be joined suecessfuUy to Ti-6Al-4 V alloy by this novel bonding method and the joint exhibits high shear strength, up to 110 MPa.展开更多
Silicon nitride composite is joined to itself by heating interlayer of Y2 O3 -AL2O3 -SiO2 mixtures above their liquidus temperatures in flowing nitrogen. The joined specimens are tested in four point flexure from room...Silicon nitride composite is joined to itself by heating interlayer of Y2 O3 -AL2O3 -SiO2 mixtures above their liquidus temperatures in flowing nitrogen. The joined specimens are tested in four point flexure from room temperature to 1373 K. The interface microstruclure and fractured surfaces after testing are observed and analyzed by SEM, EPMA and XRD respectively. The results show that F2 O3 -A12 O3 -SiO2 glass reacts with Si3 N4 at interface, forming the Si3 N4/Si2 N2 O( Y-AlrSi-O-N glass/ Y-Al- Si-O glass gradient interface. With the increase of bonding temperature and holding time, the joint strength first increases, reaching a peak, and then decreases . According to interfacial analyses , the bonding strength depends on joint thickness .展开更多
The SiC/SiC joints were vacuum brazed at 700℃,740℃,780℃and 800℃for 10 min respectively,using Ag-Cu-In-Ti active filler alloy.The microstructure and joining strength of the joints were characterized by electron pro...The SiC/SiC joints were vacuum brazed at 700℃,740℃,780℃and 800℃for 10 min respectively,using Ag-Cu-In-Ti active filler alloy.The microstructure and joining strength of the joints were characterized by electron probe X-ray microanalyser(EPMA),energy dispersive spectroscopy(EDS),transmission electron microscopy(TEM)and four-point bending strength test.The interface of the joints was composed of three parts:SiC substrate,reaction layer and filler alloy.A representative microstructure of the reaction layer:In-containing layer/TiC layer/Ti5Si3 layer was found from the TEM image.The forming of the In-containing layer could be attributed to the crack or delamination of SiC/TiC interface.The In-containing layer intensified the coefficient of thermal expansion(CTE)mismatch of SiC and the reaction layer,and affected the joining strength.With the increase of the reaction layer’s thickness,the joining strength firstly increased,then declined,and the maximum four-point bending strength reached 234 MPa.展开更多
文摘The interfacial reactions in partial transient liquid-phase bonding of Si3N4 ceramics with Ti/Ni/Ti interlayers were studied by means of scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffractometry (XRD). It was shown that the interfacial structure of Si3N4/TiN/Ti5Si3+Ti5Si4 + Ni3Si/ (NiTi ) /Ni3Ti/ Ni was formed after bonding. The activation energies for TiN layer and the mixed reaction layer of Ti5Si3 + Ti5Si4 + Ni3Si are 546. 8 kJ/mol and 543. 9 kJ/mol, respectively. The formation and transition processes of interface layer sequence in the joint were clarified by diffusion path. An important characteristic, which is different from the conventional brazing and soid-state diffusion bonding, has been found, i. e., during the partial transient liquid-phase bonding, not only the reaction layers which have formed grow, but also the diffusion path in the subsequent reaction changes because of the remarkable variation of the concentration on the metal side.
基金This work was supported by National Key Science and Technology Special Projects (2014ZX04001131), Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (HIT. NSRIF. 201119) and China Postdoctoral Science Foundation (2013M541367).
文摘AgCu/Ni composite interlayer was utilized to join SiO2 glass ceramic (74. 52% SiO2-23. 40% Al2 03 -2. 08 % K2 O, wt. % ) and Ti-6Al-4V alloy by eutectic reaction. Interface structures of the joints were identified by means of TEM analysis. This joining method contains three characteristic processes, which are the melting of AgCu eutectic alloy, eutectic reaction between interlayer and Ti-6Al-4V base material and active reaction of element Ti to SiO2 glass ceramic. It is different from traditional active brazing because active element Ti totally dissolves from Ti-6Al-4 V and reacts with SiO2 glass ceramic. SiO2 glass ceramic can be joined suecessfuUy to Ti-6Al-4 V alloy by this novel bonding method and the joint exhibits high shear strength, up to 110 MPa.
文摘Silicon nitride composite is joined to itself by heating interlayer of Y2 O3 -AL2O3 -SiO2 mixtures above their liquidus temperatures in flowing nitrogen. The joined specimens are tested in four point flexure from room temperature to 1373 K. The interface microstruclure and fractured surfaces after testing are observed and analyzed by SEM, EPMA and XRD respectively. The results show that F2 O3 -A12 O3 -SiO2 glass reacts with Si3 N4 at interface, forming the Si3 N4/Si2 N2 O( Y-AlrSi-O-N glass/ Y-Al- Si-O glass gradient interface. With the increase of bonding temperature and holding time, the joint strength first increases, reaching a peak, and then decreases . According to interfacial analyses , the bonding strength depends on joint thickness .
文摘The SiC/SiC joints were vacuum brazed at 700℃,740℃,780℃and 800℃for 10 min respectively,using Ag-Cu-In-Ti active filler alloy.The microstructure and joining strength of the joints were characterized by electron probe X-ray microanalyser(EPMA),energy dispersive spectroscopy(EDS),transmission electron microscopy(TEM)and four-point bending strength test.The interface of the joints was composed of three parts:SiC substrate,reaction layer and filler alloy.A representative microstructure of the reaction layer:In-containing layer/TiC layer/Ti5Si3 layer was found from the TEM image.The forming of the In-containing layer could be attributed to the crack or delamination of SiC/TiC interface.The In-containing layer intensified the coefficient of thermal expansion(CTE)mismatch of SiC and the reaction layer,and affected the joining strength.With the increase of the reaction layer’s thickness,the joining strength firstly increased,then declined,and the maximum four-point bending strength reached 234 MPa.