The fabrication of Bragg gratings on silicon-on-insulator (SOI) rib waveguides using electron-beam lithography is presented. The grating waveguide is optimally designed for actual photonic integration. Experimental ...The fabrication of Bragg gratings on silicon-on-insulator (SOI) rib waveguides using electron-beam lithography is presented. The grating waveguide is optimally designed for actual photonic integration. Experimental and theoretical evaluations of the Bragg grating are demonstrated. By thinning the SOl device layer and deeply etching the Bragg grating, a large grating coupling coefficient of 30cm^-1 is obtained.展开更多
A complete theoretical modeling, avoiding any priori-assumption, is deduced and demonstrated for ultra-fast femtosecond optical pulses in silicon-on-insulator optical waveguides which includes the group velocity dispe...A complete theoretical modeling, avoiding any priori-assumption, is deduced and demonstrated for ultra-fast femtosecond optical pulses in silicon-on-insulator optical waveguides which includes the group velocity dispersion, third-order dispersion, self-phase and cross-phase modulations, self-steepening and shock formation, Raman depletion, propagation loss, two-photon absorption, free-carrier absorption, and free-carrier dispersion. Finally, the temporal and spectral characteristics of 100 fs optical pulses at 1.55 μm are numerically observed in 5-mm-long waveguides while considering different initial chirps and incident peak intensity levels.展开更多
In this paper, the authors present an analytical model for coplanar waveguide on silicon-on-insulator substrate. The four-element topological network and the conformal mapping technique are used to analyse the capacit...In this paper, the authors present an analytical model for coplanar waveguide on silicon-on-insulator substrate. The four-element topological network and the conformal mapping technique are used to analyse the capacitance and the conductance of the sandwich substrate. The validity of the model is verified by the full-wave method and the experimental data. It is found that the inductance, the resistance, the capacitance and the conductance from the analytical model show they are in good agreement with the corresponding values extracted from experimental Sparameter until 10 GHz.展开更多
A phoxonic crystal waveguide with the glide symmetry is designed,in which both electromagnetic and elastic waves can propagate along the glide plane at the same time.Due to the glide symmetry,the bands of the phoxonic...A phoxonic crystal waveguide with the glide symmetry is designed,in which both electromagnetic and elastic waves can propagate along the glide plane at the same time.Due to the glide symmetry,the bands of the phoxonic crystal super-cell degenerate in pairs at the boundary of the Brillouin zone.This is the so-called band-sticking effect and it causes the appearance of gapless guided-modes.By adjusting the magnitude of the glide dislocation the edge bandgaps,the bandgap of the guided-modes at the boundary of the Brillouin zone,can be further adjusted.The photonic and phononic guided-modes can then possess only one mode for a certain frequency with relatively low group velocities,achieving single-mode guided-bands with relatively flat dispersion relationship.In addition,there exists acousto-optic interaction in the cavity constructed by the glide plane.The proposed waveguide has potential applications in the design of novel optomechanical devices.展开更多
The simulation and analysis of S-shaped waveguide bend are presented.Bend radius larger than 30 mm assures less than 0.5 dB radiation loss for a 4-μm-wide silicon-on-insulator waveguide bend with 2-μm etch depth.Int...The simulation and analysis of S-shaped waveguide bend are presented.Bend radius larger than 30 mm assures less than 0.5 dB radiation loss for a 4-μm-wide silicon-on-insulator waveguide bend with 2-μm etch depth.Intersection angle greater than 20° provides negligible crosstalk (<-30 dB) and very low insertion loss.Any reduction in bend radius and intersection angle is at the cost of the degradation of characteristics of bent waveguide and intersecting waveguide, respectively.展开更多
Cybernetic decision variants were analyzed in order to use for physical task of active noise cancelation. 10 dB mean active noise cancellation is demonstrated in two decades frequency band by usage of cybernetic decis...Cybernetic decision variants were analyzed in order to use for physical task of active noise cancelation. 10 dB mean active noise cancellation is demonstrated in two decades frequency band by usage of cybernetic decision for acoustical duct physical scale model. The used decision was found on minimization of acoustical field power transfer function from the beginning of waveguide to their end.展开更多
The propagation characteristic of two identical and parallel dark solitons in a silicon-on-insulator(SOI)waveguide is simulated numerically using the split-step Fourier method.The parallel dark solitons imposed by the...The propagation characteristic of two identical and parallel dark solitons in a silicon-on-insulator(SOI)waveguide is simulated numerically using the split-step Fourier method.The parallel dark solitons imposed by the initial chirp are investigated mainly by changing their power,their relative time delay.The simulation shows that the time delay deforms the parallel dark soliton pulse,forming a bright-like soliton in the transmission process and making the transmission quality down.By increasing the power of one dark soliton,the energy of the other dark soliton can be increased,and larger increase in a soliton’s power leads to larger increase in the energy of the other.When the initial chirp is introduced into one of the dark solitons,higher energy consumption is observed.In particular,positive chirps resulting in pulse broadening width while negative chirps narrowing,with an obvious compression effect on the other dark soliton.Finally,large negative chirps are found to have a profound impact on parallel and nonparallel dark solitons.展开更多
The spectral evolution of bright soliton in a silicon-on-insulator optical waveguide is numerically simulated using the split-step Fourier method.The power and input chirp of the dark soliton and the second-order disp...The spectral evolution of bright soliton in a silicon-on-insulator optical waveguide is numerically simulated using the split-step Fourier method.The power and input chirp of the dark soliton and the second-order dispersion are varied to investigate the effect of dark soliton on the spectrum of bright soliton.The simulations prove that the dark soliton modifies the spectral shape of the bright soliton.Further,the variation in the power of dark soliton affects the splitting of bright soliton.Furthermore,the chirped dark soliton can improve the spectral width and flatness.The variation in the dispersion of dark soliton modifies the phase matching of the bright soliton and the dispersive wave emission,thereby affecting the spectral evolution.展开更多
A rearrangeable nonblocking thermo-optic 4×4 switching matrix,which consists of five 2×2 multimode interference-based Mach-Zehnder interferometer(MMI-MZI) switch elements,is designed and fabricated.The minim...A rearrangeable nonblocking thermo-optic 4×4 switching matrix,which consists of five 2×2 multimode interference-based Mach-Zehnder interferometer(MMI-MZI) switch elements,is designed and fabricated.The minimum and maximum excess loss for the matrix are 6.6 and 10.4dB,respectively.The crosstalk in the matrix is measured to be between -12 and -19.8dB.The switching speed of the matrix is less than 30μs.The power consumption for the single switch element is about 330mW.展开更多
Three kinds of coplanar waveguides (CPWs) are designed and fabricated on different silicon substrates---common low-resistivity silicon substrate (LRS), LRS with a 3μm-thick silicon oxide interlayer, and high-resi...Three kinds of coplanar waveguides (CPWs) are designed and fabricated on different silicon substrates---common low-resistivity silicon substrate (LRS), LRS with a 3μm-thick silicon oxide interlayer, and high-resistivity silicon (HRS) substrate. The results show that the microwave loss of a CPW on LRS is too high to be used, but it can be greatly reduced by adding a thick interlayer of silicon oxide between the CPW transmission lines and the LRS.A CPW directly on HRS shows a loss lower than 2dB/cm in the range of 0-26GHz and the process is simple,so HRS is a more suitable CPW substrate.展开更多
An ultracompact 3 dB coupler is designed and fabricated in silicon on insulator,based on 1×2 line tapered multimode interference (MMI) coupler.Comparing with the conventional straight MMI coupler,the device is...An ultracompact 3 dB coupler is designed and fabricated in silicon on insulator,based on 1×2 line tapered multimode interference (MMI) coupler.Comparing with the conventional straight MMI coupler,the device is ~40% shorter in length.The device exhibits uniformity of 1 3dB and excess loss of 2 5dB.展开更多
Optical waveguides in silica-on-silicon are one of the key elements in optical communications.The processes of deep etching silica waveguides using resist and metal masks in RIE plasma are investigated.The etching res...Optical waveguides in silica-on-silicon are one of the key elements in optical communications.The processes of deep etching silica waveguides using resist and metal masks in RIE plasma are investigated.The etching responses,including etching rate and selectivity as functions of variation of parameters,are modeled with a 3D neural network.A novel resist/metal combined mask that can overcome the single-layer masks’ limitations is developed for enhancing the waveguides deep etching and low-loss optical waveguides are fabricated at last.展开更多
SOI waveguides fabricated by wet-etching method are demonstrated.The single mode waveguide and 1×2 3dB MMI splitter are analyzed and designed by three dimensional beam propagation method to correct the error of e...SOI waveguides fabricated by wet-etching method are demonstrated.The single mode waveguide and 1×2 3dB MMI splitter are analyzed and designed by three dimensional beam propagation method to correct the error of effective index method and guided mode method.The devices are fabricated.Excellent performances,such as low propagation loss of -1.37dB/cm,low excess loss of -2.2dB,and good uniformity of 0.3dB,are achieved.展开更多
A 1×8 multimode interference power splitter with multimode input/output waveguides in SOI material is designed by the beam propagation method and fabricated by the inductive coupled plasma etching technology for...A 1×8 multimode interference power splitter with multimode input/output waveguides in SOI material is designed by the beam propagation method and fabricated by the inductive coupled plasma etching technology for use in fiber optics communication systems.The fabricated device exhibits low loss and good coupling uniformity.The excess loss is lower than 0 8dB,and the uniformity is 0 45dB at the wavelength of 1550nm.Moreover,the polarization dependent loss is lower than 0 7dB at 1550nm.The device size is only 2mm×10mm.展开更多
The self imaging effect in graded index waveguides using annealed proton exchange (APE) technique in lithium niobate (LiNbO 3) waveguides is analyzed and simulated using the three dimensional nonparaxial beam pro...The self imaging effect in graded index waveguides using annealed proton exchange (APE) technique in lithium niobate (LiNbO 3) waveguides is analyzed and simulated using the three dimensional nonparaxial beam propagation method (BPM).On this basis,a 1×8 multimode interference (MMI) optical power splitter by APE technique in X cut LiNibO 3 with Y propagation substrate is fabricated.Measurements show that the device has realized eight powers splittings.展开更多
A novel nanolaser structure based on a hybrid plasmonic waveguide is proposed and investigated. The coupling between the metal nanowire and the high-index semiconductor nanowire with optical gain leads to a strong fie...A novel nanolaser structure based on a hybrid plasmonic waveguide is proposed and investigated. The coupling between the metal nanowire and the high-index semiconductor nanowire with optical gain leads to a strong field enhancement in the air gap region and low propagation loss, which enables the realization of lasing at the deep subwavelength scale.By optimizing the geometric parameters of the structure, a minimal lasing threshold is achieved while maintaining the capacity of ultra-deep subwavelength mode confinement. Compared with the previous coupled nanowire pair based hybrid plasmonic structure, a lower threshold can be obtained with the same geometric parameters. The proposed nanolaser can be integrated into a miniature chip as a nanoscale light source and has the potential to be widely used in optical communication and optical sensing technology.展开更多
Optical planar waveguides in Yba+-doped phosphate glasses are fabricated by implanting triple-energy helium ions. The guiding modes and the near-field intensity distribution are measured by using the prism-coupling m...Optical planar waveguides in Yba+-doped phosphate glasses are fabricated by implanting triple-energy helium ions. The guiding modes and the near-field intensity distribution are measured by using the prism-coupling method and the end-face coupling setup with a He Ne laser at 633 nm The intensity calculation method (ICM) is used to reconstruct the refractive index profile of the waveguide. The absorption and the fluorescence investigations reveal that the glass bulk features are well preserved in the active volumes of the waveguides, suggesting the fabricated structures for possible applications as waveguide lasers.展开更多
This paper reports that the Si+ self-ion-implantation are conducted on the silicon-on-insulator wafers with the 2SSi+ doses of 7 ×1012, 1 × 1013, 4 × 1013, and 3× 1014 cm-2, respectively. After t...This paper reports that the Si+ self-ion-implantation are conducted on the silicon-on-insulator wafers with the 2SSi+ doses of 7 ×1012, 1 × 1013, 4 × 1013, and 3× 1014 cm-2, respectively. After the suitable annealing, these samples are characterized by using the photoluminescence technique at different recorded temperatures. Plentiful emission peaks are observed in these implanted silicon-on-insulator samples, including the unwonted intense P~ band which exhibits a great potential in the optoelectronic application. These results indicate that severe transformation of the interstitial clusters can be manipulated by the implanting dose at suitable annealing temperatures. The high critical temperatures for the photoluminescence intensity growth of the two signatures are well discussed based on the thermal ionization model of free exciton.展开更多
Based on 3 D-TCAD simulations, single-event transient(SET) effects and charge collection mechanisms in fully depleted silicon-on-insulator(FDSOI) transistors are investigated. This work presents a comparison between28...Based on 3 D-TCAD simulations, single-event transient(SET) effects and charge collection mechanisms in fully depleted silicon-on-insulator(FDSOI) transistors are investigated. This work presents a comparison between28-nm technology and 0.2-lm technology to analyze the impact of strike location on SET sensitivity in FDSOI devices. Simulation results show that the most SET-sensitive region in FDSOI transistors is the drain region near the gate. An in-depth analysis shows that the bipolar amplification effect in FDSOI devices is dependent on the strike locations. In addition, when the drain contact is moved toward the drain direction, the most sensitive region drifts toward the drain and collects more charge. This provides theoretical guidance for SET hardening.展开更多
We discuss the characterization and modeling of coplanar waveguides (CPW) realized in TSMC 0. 13μm CMOS process. EM-field simulations with momentum are performed to estimate the important parameters of the transmis...We discuss the characterization and modeling of coplanar waveguides (CPW) realized in TSMC 0. 13μm CMOS process. EM-field simulations with momentum are performed to estimate the important parameters of the transmission lines, such as characteristic impedance and propagation loss. Coplanar waveguide libraries are designed with Z values of 30,50,70, and 100Ω. Finally, the propagation constant and the characteristic impedance are measured in a frequency range from 0. 1 to 40GHz with a vector-network analyzer,using the short-open-loadthru (SOLT) de-embedding technique. The distributed parameters of the CPWs are extracted from the measured S-parameters.展开更多
文摘The fabrication of Bragg gratings on silicon-on-insulator (SOI) rib waveguides using electron-beam lithography is presented. The grating waveguide is optimally designed for actual photonic integration. Experimental and theoretical evaluations of the Bragg grating are demonstrated. By thinning the SOl device layer and deeply etching the Bragg grating, a large grating coupling coefficient of 30cm^-1 is obtained.
基金National Natural Science Foundation of China(60677023)
文摘A complete theoretical modeling, avoiding any priori-assumption, is deduced and demonstrated for ultra-fast femtosecond optical pulses in silicon-on-insulator optical waveguides which includes the group velocity dispersion, third-order dispersion, self-phase and cross-phase modulations, self-steepening and shock formation, Raman depletion, propagation loss, two-photon absorption, free-carrier absorption, and free-carrier dispersion. Finally, the temporal and spectral characteristics of 100 fs optical pulses at 1.55 μm are numerically observed in 5-mm-long waveguides while considering different initial chirps and incident peak intensity levels.
基金Project supported by the National Natural Science Foundation of China(Grant No.10775166)the Zhejiang Provincial Science Technology Foundation,China(Grant No.2008C31002)
文摘In this paper, the authors present an analytical model for coplanar waveguide on silicon-on-insulator substrate. The four-element topological network and the conformal mapping technique are used to analyse the capacitance and the conductance of the sandwich substrate. The validity of the model is verified by the full-wave method and the experimental data. It is found that the inductance, the resistance, the capacitance and the conductance from the analytical model show they are in good agreement with the corresponding values extracted from experimental Sparameter until 10 GHz.
基金Project supported by the National Natural Science Foundation of China(Grant No.12064025)the Natural Science Foundation of Jiangxi Province,China(Grant No.20212ACB202006)+1 种基金the Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province,China(Grant No.20204BCJ22012)the Open Project of the Key Laboratory of Radar Imaging and Microwave Photonic Technology of the Education Ministry of China.
文摘A phoxonic crystal waveguide with the glide symmetry is designed,in which both electromagnetic and elastic waves can propagate along the glide plane at the same time.Due to the glide symmetry,the bands of the phoxonic crystal super-cell degenerate in pairs at the boundary of the Brillouin zone.This is the so-called band-sticking effect and it causes the appearance of gapless guided-modes.By adjusting the magnitude of the glide dislocation the edge bandgaps,the bandgap of the guided-modes at the boundary of the Brillouin zone,can be further adjusted.The photonic and phononic guided-modes can then possess only one mode for a certain frequency with relatively low group velocities,achieving single-mode guided-bands with relatively flat dispersion relationship.In addition,there exists acousto-optic interaction in the cavity constructed by the glide plane.The proposed waveguide has potential applications in the design of novel optomechanical devices.
文摘The simulation and analysis of S-shaped waveguide bend are presented.Bend radius larger than 30 mm assures less than 0.5 dB radiation loss for a 4-μm-wide silicon-on-insulator waveguide bend with 2-μm etch depth.Intersection angle greater than 20° provides negligible crosstalk (<-30 dB) and very low insertion loss.Any reduction in bend radius and intersection angle is at the cost of the degradation of characteristics of bent waveguide and intersecting waveguide, respectively.
文摘Cybernetic decision variants were analyzed in order to use for physical task of active noise cancelation. 10 dB mean active noise cancellation is demonstrated in two decades frequency band by usage of cybernetic decision for acoustical duct physical scale model. The used decision was found on minimization of acoustical field power transfer function from the beginning of waveguide to their end.
基金Project supported by the National Natural Science Foundation of China(Grant No.61741509)
文摘The propagation characteristic of two identical and parallel dark solitons in a silicon-on-insulator(SOI)waveguide is simulated numerically using the split-step Fourier method.The parallel dark solitons imposed by the initial chirp are investigated mainly by changing their power,their relative time delay.The simulation shows that the time delay deforms the parallel dark soliton pulse,forming a bright-like soliton in the transmission process and making the transmission quality down.By increasing the power of one dark soliton,the energy of the other dark soliton can be increased,and larger increase in a soliton’s power leads to larger increase in the energy of the other.When the initial chirp is introduced into one of the dark solitons,higher energy consumption is observed.In particular,positive chirps resulting in pulse broadening width while negative chirps narrowing,with an obvious compression effect on the other dark soliton.Finally,large negative chirps are found to have a profound impact on parallel and nonparallel dark solitons.
基金National Natural Science Foundation of China(Grant No.61741509).
文摘The spectral evolution of bright soliton in a silicon-on-insulator optical waveguide is numerically simulated using the split-step Fourier method.The power and input chirp of the dark soliton and the second-order dispersion are varied to investigate the effect of dark soliton on the spectrum of bright soliton.The simulations prove that the dark soliton modifies the spectral shape of the bright soliton.Further,the variation in the power of dark soliton affects the splitting of bright soliton.Furthermore,the chirped dark soliton can improve the spectral width and flatness.The variation in the dispersion of dark soliton modifies the phase matching of the bright soliton and the dispersive wave emission,thereby affecting the spectral evolution.
文摘A rearrangeable nonblocking thermo-optic 4×4 switching matrix,which consists of five 2×2 multimode interference-based Mach-Zehnder interferometer(MMI-MZI) switch elements,is designed and fabricated.The minimum and maximum excess loss for the matrix are 6.6 and 10.4dB,respectively.The crosstalk in the matrix is measured to be between -12 and -19.8dB.The switching speed of the matrix is less than 30μs.The power consumption for the single switch element is about 330mW.
文摘Three kinds of coplanar waveguides (CPWs) are designed and fabricated on different silicon substrates---common low-resistivity silicon substrate (LRS), LRS with a 3μm-thick silicon oxide interlayer, and high-resistivity silicon (HRS) substrate. The results show that the microwave loss of a CPW on LRS is too high to be used, but it can be greatly reduced by adding a thick interlayer of silicon oxide between the CPW transmission lines and the LRS.A CPW directly on HRS shows a loss lower than 2dB/cm in the range of 0-26GHz and the process is simple,so HRS is a more suitable CPW substrate.
文摘An ultracompact 3 dB coupler is designed and fabricated in silicon on insulator,based on 1×2 line tapered multimode interference (MMI) coupler.Comparing with the conventional straight MMI coupler,the device is ~40% shorter in length.The device exhibits uniformity of 1 3dB and excess loss of 2 5dB.
文摘Optical waveguides in silica-on-silicon are one of the key elements in optical communications.The processes of deep etching silica waveguides using resist and metal masks in RIE plasma are investigated.The etching responses,including etching rate and selectivity as functions of variation of parameters,are modeled with a 3D neural network.A novel resist/metal combined mask that can overcome the single-layer masks’ limitations is developed for enhancing the waveguides deep etching and low-loss optical waveguides are fabricated at last.
文摘SOI waveguides fabricated by wet-etching method are demonstrated.The single mode waveguide and 1×2 3dB MMI splitter are analyzed and designed by three dimensional beam propagation method to correct the error of effective index method and guided mode method.The devices are fabricated.Excellent performances,such as low propagation loss of -1.37dB/cm,low excess loss of -2.2dB,and good uniformity of 0.3dB,are achieved.
文摘A 1×8 multimode interference power splitter with multimode input/output waveguides in SOI material is designed by the beam propagation method and fabricated by the inductive coupled plasma etching technology for use in fiber optics communication systems.The fabricated device exhibits low loss and good coupling uniformity.The excess loss is lower than 0 8dB,and the uniformity is 0 45dB at the wavelength of 1550nm.Moreover,the polarization dependent loss is lower than 0 7dB at 1550nm.The device size is only 2mm×10mm.
文摘The self imaging effect in graded index waveguides using annealed proton exchange (APE) technique in lithium niobate (LiNbO 3) waveguides is analyzed and simulated using the three dimensional nonparaxial beam propagation method (BPM).On this basis,a 1×8 multimode interference (MMI) optical power splitter by APE technique in X cut LiNibO 3 with Y propagation substrate is fabricated.Measurements show that the device has realized eight powers splittings.
基金Project supported by the National Natural Science Foundation of China(Grant No.61172044)the Natural Science Foundation of Hebei Province,China(Grant No.F2014501150)
文摘A novel nanolaser structure based on a hybrid plasmonic waveguide is proposed and investigated. The coupling between the metal nanowire and the high-index semiconductor nanowire with optical gain leads to a strong field enhancement in the air gap region and low propagation loss, which enables the realization of lasing at the deep subwavelength scale.By optimizing the geometric parameters of the structure, a minimal lasing threshold is achieved while maintaining the capacity of ultra-deep subwavelength mode confinement. Compared with the previous coupled nanowire pair based hybrid plasmonic structure, a lower threshold can be obtained with the same geometric parameters. The proposed nanolaser can be integrated into a miniature chip as a nanoscale light source and has the potential to be widely used in optical communication and optical sensing technology.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61077070, 10876009, and 51002181)the One Hundred Talents Programs of the Chinese Academy of Sciences
文摘Optical planar waveguides in Yba+-doped phosphate glasses are fabricated by implanting triple-energy helium ions. The guiding modes and the near-field intensity distribution are measured by using the prism-coupling method and the end-face coupling setup with a He Ne laser at 633 nm The intensity calculation method (ICM) is used to reconstruct the refractive index profile of the waveguide. The absorption and the fluorescence investigations reveal that the glass bulk features are well preserved in the active volumes of the waveguides, suggesting the fabricated structures for possible applications as waveguide lasers.
基金supported by the National Natural Science Foundation of China (Grant No. 10964016)the Key Project of the Chinese Ministry of Education (Grant No. 210207)the Natural Science Foundation of Yunnan University (Grant No. 2009E27Q)
文摘This paper reports that the Si+ self-ion-implantation are conducted on the silicon-on-insulator wafers with the 2SSi+ doses of 7 ×1012, 1 × 1013, 4 × 1013, and 3× 1014 cm-2, respectively. After the suitable annealing, these samples are characterized by using the photoluminescence technique at different recorded temperatures. Plentiful emission peaks are observed in these implanted silicon-on-insulator samples, including the unwonted intense P~ band which exhibits a great potential in the optoelectronic application. These results indicate that severe transformation of the interstitial clusters can be manipulated by the implanting dose at suitable annealing temperatures. The high critical temperatures for the photoluminescence intensity growth of the two signatures are well discussed based on the thermal ionization model of free exciton.
基金supported by the National Natural Science Foundation of China(Nos.61434007 and 61376109)
文摘Based on 3 D-TCAD simulations, single-event transient(SET) effects and charge collection mechanisms in fully depleted silicon-on-insulator(FDSOI) transistors are investigated. This work presents a comparison between28-nm technology and 0.2-lm technology to analyze the impact of strike location on SET sensitivity in FDSOI devices. Simulation results show that the most SET-sensitive region in FDSOI transistors is the drain region near the gate. An in-depth analysis shows that the bipolar amplification effect in FDSOI devices is dependent on the strike locations. In addition, when the drain contact is moved toward the drain direction, the most sensitive region drifts toward the drain and collects more charge. This provides theoretical guidance for SET hardening.
文摘We discuss the characterization and modeling of coplanar waveguides (CPW) realized in TSMC 0. 13μm CMOS process. EM-field simulations with momentum are performed to estimate the important parameters of the transmission lines, such as characteristic impedance and propagation loss. Coplanar waveguide libraries are designed with Z values of 30,50,70, and 100Ω. Finally, the propagation constant and the characteristic impedance are measured in a frequency range from 0. 1 to 40GHz with a vector-network analyzer,using the short-open-loadthru (SOLT) de-embedding technique. The distributed parameters of the CPWs are extracted from the measured S-parameters.