Trimethylsilylated silica was synthesized. through hydrolytic condensation of tetraethoxysilane followed by trimethylsilylation. Rheological properties of the silicone resin with trimethylsilylated silica as modifier ...Trimethylsilylated silica was synthesized. through hydrolytic condensation of tetraethoxysilane followed by trimethylsilylation. Rheological properties of the silicone resin with trimethylsilylated silica as modifier were studied. It turned out that the particle size of silica was important to the rheological behavior of the modified resin. Trimethylsilylated silica of medium particle size shows the strongest tendency of forming physical network in the resin.展开更多
Novel titanium-doped silicone resins were synthesized from low-cost silane monomers and tetrabutyl titanate as raw materials and hydrochloric acid as catalyst, with titanium element as dopant into principal chain of S...Novel titanium-doped silicone resins were synthesized from low-cost silane monomers and tetrabutyl titanate as raw materials and hydrochloric acid as catalyst, with titanium element as dopant into principal chain of Si-O-Si. The resins were characterized by means of FTIR, IH NMR and 13C NMR spectra, their thermal properties and curing properties were investigated and their corresponding films were determined. The results show that the thermal stability and storage stability of the resins were influenced by the types of silane monomers containing dif- ferent carbon atomicities of organic group. The thermal stability of the titanium-doped silicone resin with a molar ratio of silane monomer B(n-propyl triethoxysilane) to silane monomer C(n-octyl triethoxysilane) being 1:1 is superior to that of the resin with a molar ratio of silane monomer B to silane monomer C being 1:3. However, the storage stability of the former is inferior to that of the latter. This work also showed that the synthesized titanium-doped silicone resins have the highest thermal stability up to 450--500℃ with an atomicity molar ratio of 1:4 of titanium to silicon in the reactants. But the best storage stability of the resin prepared from the reactants with an atomicity molar ratio of 1:6[n(Ti):n(Si)] was obtained. The effect of the type and content of curing agent on the curing properties of the resin was also studied. Moreover, thermal mechanism and curing mechanism were proposed in this work.展开更多
MQ silicone resins were prepared through hydrolytic condensation of ethyl polysilicate or tetraethoxysilane and hexamethyl disiloxane. The unit ratio of the MQ resins was determined by Si-29-NMR. The relationship of t...MQ silicone resins were prepared through hydrolytic condensation of ethyl polysilicate or tetraethoxysilane and hexamethyl disiloxane. The unit ratio of the MQ resins was determined by Si-29-NMR. The relationship of the unit ratio of the product resins with that in the feed was studied. When the reaction was catalyzed by aqueous hydrochloric acid, and the unit ratio of M to Q in the feed was more than 1, the unit ratio of the product was usually lower than that of the feed. The MQ silicon with an unit ratio of M/Q > 2 could not be obtained. However, if the reaction was catalyzed by concentrated sulfuric acid and the reverse hydrolysis process was employed, MQ silicone resin with very high M/Q ratio was successfully prepared.展开更多
Amino silicone resins were synthesized through a three-step method using (3-aminopropyl) triethoxysilane (APTES), methyltrimethoxysilane (MTMS) and end-capping agents, The products were characterized by Fourier ...Amino silicone resins were synthesized through a three-step method using (3-aminopropyl) triethoxysilane (APTES), methyltrimethoxysilane (MTMS) and end-capping agents, The products were characterized by Fourier transformed infrared spec- troscopy (FT-IR), nuclear magnetic resonance ( 1 H NMR), element analysis and gel permeation chromatography (GPC). The results of 1 H NMR indicate that the chemical shift signal of acid-catalyzed products is weak at δ3.4 (attributing to alkoxy). FT-IR shows that there is a vibration peak of Si-OH at 3 100-3 600 cm 1 and the intensity of the peaks is most weak at 6h. The results show that this method cannot only effectively reduce the residue of alkoxy groups and Si-OH groups, but also obtain the products with sufficient amino group. It concludes that this resin is suitable as modifier in the silicone rubber.展开更多
The coated fiberglass fabric was prepared to protect personnel and equipment from sparks, heat, and molten metals during hot work projects. Ferric oxide powder 2%,mica powder6%,wollastonite powder 4%,and white carbon ...The coated fiberglass fabric was prepared to protect personnel and equipment from sparks, heat, and molten metals during hot work projects. Ferric oxide powder 2%,mica powder6%,wollastonite powder 4%,and white carbon black 8% were added in the phenyl methyl silicone to prepare the composite silicone solution. The french chalk and coupling agent can effectively solve the deposition of fillers in the coating solution. Compared with the original fiberglass fabric,heat resistance of the coated fabric under high temperature was greatly improved, and the temperature limitation in short period was higher than 900℃. Horizontal flammability tests showed that the coated fabric was non-combustible with no melting and no fragments. The temperature for long period usage of coated fabric was lower than 500 ℃. Welding drop test showed that the coating could prevent the molten metals,sparks and heat from transferring in the fabric. Test for toxic gas release showed that the toxic gases such as HCN,SO_2,HCl,and HF were not detected,only CO( 100 mg / m^3) and NO( 12 mg /m^3) were detected,and their concentrations were far lower than the limitation values CO( 4 375 mg / m^3) and NO( 134 mg /m^3). The breaking strength of coated fabric was almost twice the strength of the original fabric,and the coated surface had good water and oil repellency.展开更多
Joints between sintered silicon carbide (SSiC) were produced using a polysiloxane silicon resin YR3370 (GE Toshiba Silicones) as joining material. Samples were heat treated in a 99.99% nitrogen flux at temperature...Joints between sintered silicon carbide (SSiC) were produced using a polysiloxane silicon resin YR3370 (GE Toshiba Silicones) as joining material. Samples were heat treated in a 99.99% nitrogen flux at temperatures ranging from 1 100 ℃ to 1 300 ℃. Three point bending strength of the joint reached the maximum of 179 MPa as joined at 1 200℃. The joining layer is continuous, homogeneous and densified and has a thickness of 2 μm -5μm. The joining mechanism is that the amorphous silicon oxycarbide (SixOyCz) ceramic pyrolyzed from silicon resin YR3370 acts as an inorganic adhesive to SSiC substrate, which means the formation of the continuous Si-C bond structure between SixOyCz structure and SSiC substrate. Life prediction of the ceramic joint can be realized through the measurement of the critical time of the joint after the cyclic loading test.展开更多
A facile strategy was developed to fabricate flexible polyurethane(PU)foam composites with exceptional flame retardancy.The approach involves the incorporation of graphene oxide(GO)into a silicone resin(SiR)solution,w...A facile strategy was developed to fabricate flexible polyurethane(PU)foam composites with exceptional flame retardancy.The approach involves the incorporation of graphene oxide(GO)into a silicone resin(SiR)solution,which is then deposited onto a PU foam surface via the dip-coating technique and cured.Fourier-transform infrared spectroscopy,scanning electron microscopy,and Raman spectroscopy measurements demonstrated that the SiR and GO were successfully coated onto the PU skeleton and the intrinsic porous structure of the PU foam remained intact.The effects of SiR and GO on the mechanical and thermal stability and flame retardancy of PU composites were evaluated through compression tests,thermogravimetric analysis,vertical combustion tests,and the limiting oxygen index.The measurement results revealed that the composites(PU@SiR-GO)showed superior flame retardancy and thermal and mechanical stability compared to pristine PU or PU coated with SiR alone.The mechanical and thermal stability and the flame-retardant properties of the PU composites were enhanced significantly with increasing GO content.Based on the composition,microstructure,and surface morphology of PU@SiR-GO composites before and after combustion tests,a possible flame-retardance mechanism is proposed.This work provides a simple and effective strategy for fabricating flame retardant composites with improved mechanical performance.展开更多
文摘Trimethylsilylated silica was synthesized. through hydrolytic condensation of tetraethoxysilane followed by trimethylsilylation. Rheological properties of the silicone resin with trimethylsilylated silica as modifier were studied. It turned out that the particle size of silica was important to the rheological behavior of the modified resin. Trimethylsilylated silica of medium particle size shows the strongest tendency of forming physical network in the resin.
基金Supported by the Science and Technology Project of Guangdong Province, China(No.2009B011000012)
文摘Novel titanium-doped silicone resins were synthesized from low-cost silane monomers and tetrabutyl titanate as raw materials and hydrochloric acid as catalyst, with titanium element as dopant into principal chain of Si-O-Si. The resins were characterized by means of FTIR, IH NMR and 13C NMR spectra, their thermal properties and curing properties were investigated and their corresponding films were determined. The results show that the thermal stability and storage stability of the resins were influenced by the types of silane monomers containing dif- ferent carbon atomicities of organic group. The thermal stability of the titanium-doped silicone resin with a molar ratio of silane monomer B(n-propyl triethoxysilane) to silane monomer C(n-octyl triethoxysilane) being 1:1 is superior to that of the resin with a molar ratio of silane monomer B to silane monomer C being 1:3. However, the storage stability of the former is inferior to that of the latter. This work also showed that the synthesized titanium-doped silicone resins have the highest thermal stability up to 450--500℃ with an atomicity molar ratio of 1:4 of titanium to silicon in the reactants. But the best storage stability of the resin prepared from the reactants with an atomicity molar ratio of 1:6[n(Ti):n(Si)] was obtained. The effect of the type and content of curing agent on the curing properties of the resin was also studied. Moreover, thermal mechanism and curing mechanism were proposed in this work.
文摘MQ silicone resins were prepared through hydrolytic condensation of ethyl polysilicate or tetraethoxysilane and hexamethyl disiloxane. The unit ratio of the MQ resins was determined by Si-29-NMR. The relationship of the unit ratio of the product resins with that in the feed was studied. When the reaction was catalyzed by aqueous hydrochloric acid, and the unit ratio of M to Q in the feed was more than 1, the unit ratio of the product was usually lower than that of the feed. The MQ silicon with an unit ratio of M/Q > 2 could not be obtained. However, if the reaction was catalyzed by concentrated sulfuric acid and the reverse hydrolysis process was employed, MQ silicone resin with very high M/Q ratio was successfully prepared.
基金Supported by the National Natural Science Foundation of China(31170558)
文摘Amino silicone resins were synthesized through a three-step method using (3-aminopropyl) triethoxysilane (APTES), methyltrimethoxysilane (MTMS) and end-capping agents, The products were characterized by Fourier transformed infrared spec- troscopy (FT-IR), nuclear magnetic resonance ( 1 H NMR), element analysis and gel permeation chromatography (GPC). The results of 1 H NMR indicate that the chemical shift signal of acid-catalyzed products is weak at δ3.4 (attributing to alkoxy). FT-IR shows that there is a vibration peak of Si-OH at 3 100-3 600 cm 1 and the intensity of the peaks is most weak at 6h. The results show that this method cannot only effectively reduce the residue of alkoxy groups and Si-OH groups, but also obtain the products with sufficient amino group. It concludes that this resin is suitable as modifier in the silicone rubber.
基金National Natural Science Foundation of China(No.51206122)Natural Science Foundation of Tianjin,China(No.13JCQNJC03000)
文摘The coated fiberglass fabric was prepared to protect personnel and equipment from sparks, heat, and molten metals during hot work projects. Ferric oxide powder 2%,mica powder6%,wollastonite powder 4%,and white carbon black 8% were added in the phenyl methyl silicone to prepare the composite silicone solution. The french chalk and coupling agent can effectively solve the deposition of fillers in the coating solution. Compared with the original fiberglass fabric,heat resistance of the coated fabric under high temperature was greatly improved, and the temperature limitation in short period was higher than 900℃. Horizontal flammability tests showed that the coated fabric was non-combustible with no melting and no fragments. The temperature for long period usage of coated fabric was lower than 500 ℃. Welding drop test showed that the coating could prevent the molten metals,sparks and heat from transferring in the fabric. Test for toxic gas release showed that the toxic gases such as HCN,SO_2,HCl,and HF were not detected,only CO( 100 mg / m^3) and NO( 12 mg /m^3) were detected,and their concentrations were far lower than the limitation values CO( 4 375 mg / m^3) and NO( 134 mg /m^3). The breaking strength of coated fabric was almost twice the strength of the original fabric,and the coated surface had good water and oil repellency.
基金National Key Fundamental R&D Plan (2004CB217808)National Natural Science Foundation of China (20271037)
文摘Joints between sintered silicon carbide (SSiC) were produced using a polysiloxane silicon resin YR3370 (GE Toshiba Silicones) as joining material. Samples were heat treated in a 99.99% nitrogen flux at temperatures ranging from 1 100 ℃ to 1 300 ℃. Three point bending strength of the joint reached the maximum of 179 MPa as joined at 1 200℃. The joining layer is continuous, homogeneous and densified and has a thickness of 2 μm -5μm. The joining mechanism is that the amorphous silicon oxycarbide (SixOyCz) ceramic pyrolyzed from silicon resin YR3370 acts as an inorganic adhesive to SSiC substrate, which means the formation of the continuous Si-C bond structure between SixOyCz structure and SSiC substrate. Life prediction of the ceramic joint can be realized through the measurement of the critical time of the joint after the cyclic loading test.
基金This work was supported by the National Key Research and Development Program(Grant No.2017YFB0307700)the Department of Scientific and Technology of Zhejiang Province(LGG18E030007,LGG19E030007)+1 种基金the Project for the Innovation of High Level Returned Overseas Scholars(or team)in Hangzhou.We also acknowledge the support from Collaborative Innovation Center of Zhejiang Province for the Manufacture of Fluorine and Silicone Fine Chemicals and Materials(FSi2018A028,FSi2018B004)professional development project for domestic visiting scholars in universities(FX2017054).
文摘A facile strategy was developed to fabricate flexible polyurethane(PU)foam composites with exceptional flame retardancy.The approach involves the incorporation of graphene oxide(GO)into a silicone resin(SiR)solution,which is then deposited onto a PU foam surface via the dip-coating technique and cured.Fourier-transform infrared spectroscopy,scanning electron microscopy,and Raman spectroscopy measurements demonstrated that the SiR and GO were successfully coated onto the PU skeleton and the intrinsic porous structure of the PU foam remained intact.The effects of SiR and GO on the mechanical and thermal stability and flame retardancy of PU composites were evaluated through compression tests,thermogravimetric analysis,vertical combustion tests,and the limiting oxygen index.The measurement results revealed that the composites(PU@SiR-GO)showed superior flame retardancy and thermal and mechanical stability compared to pristine PU or PU coated with SiR alone.The mechanical and thermal stability and the flame-retardant properties of the PU composites were enhanced significantly with increasing GO content.Based on the composition,microstructure,and surface morphology of PU@SiR-GO composites before and after combustion tests,a possible flame-retardance mechanism is proposed.This work provides a simple and effective strategy for fabricating flame retardant composites with improved mechanical performance.