期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Leaching of vanadium,sodium,and silicon from molten V?Ti-bearing slag obtained from low-grade vanadium-bearing titanomagnetite 被引量:1
1
作者 Yuan-yuan Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第8期898-905,共8页
The water leaching process of vanadium, sodium, and silicon from molten vanadium-titanium-bearing(V-Ti-bearing) slag obtained from low-grade vanadium-bearing titanomagnetite was investigated systematically. The resu... The water leaching process of vanadium, sodium, and silicon from molten vanadium-titanium-bearing(V-Ti-bearing) slag obtained from low-grade vanadium-bearing titanomagnetite was investigated systematically. The results show that calcium titanate, sodium aluminosilicate, sodium oxide, silicon dioxide and sodium vanadate are the major components of the molten V-Ti-bearing slag. The experimental results indicate that the liquid-solid(L/S) mass ratio significantly affects the leaching process because of the respective solubilities and diffusion rates of the components. A total of 83.8% of vanadium, 72.8% of sodium, and 16.1% of silicon can be leached out via a triple counter-current leaching process under the optimal conditions of a particle size below 0.074 mm, a temperature of 90°C, a leaching time of 20 min, an L/S mass ratio of 4:1, and a stirring speed of 300 r/min. The kinetics of vanadium leaching is well described by an internal diffusion-controlled model and the apparent activation energy is 11.1 kJ/mol. The leaching mechanism of vanadium was also analyzed. 展开更多
关键词 titanomagnetite vanadium metallurgy leaching kinetics sodium silicon leaching rate
下载PDF
Effects of CaO and Na2CO3 on the Reduction of High Silicon Iron Ores 被引量:2
2
作者 范敦城 倪文 +1 位作者 WANG Jianyue WANG Kun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第3期508-516,共9页
The effects of CaO and Na2CO3 on the reduction of high silicon iron ores at 1 250 ℃ were studied. The experimental results showed that the metallization rate was significantly hindered by the addition of CaO and Na2C... The effects of CaO and Na2CO3 on the reduction of high silicon iron ores at 1 250 ℃ were studied. The experimental results showed that the metallization rate was significantly hindered by the addition of CaO and Na2CO3, particularly at the early stage of roasting, compared to the rate without additives. In the absence of additives, iron oxides were quickly reduced to metallic iron, and fayalite was difficult to form. When CaO and Na2CO3 were added, the low reducible iron-containing silicate compounds formed and melted, subsequently retarding the metallization process. The inhibition of Na2CO3 was more noticeable than that of CaO, and higher Na2CO3 doses resulted in stronger inhibition of the increased metallization rate. However, when Na2CO3 was added prior to CaO, the liquid phase formed, which facilitated the growth of the metallic phase. To reinforce the separation of the metallic phase and slag, an appropriate amount of liquid phase generated during the reduction is necessary. It was shown that when 10% CaO and 10% Na2CO3 were added, a high metallization rate and larger metallic iron particles were obtained, thus further decreasing the required Na2CO3 dosage. 展开更多
关键词 high silicon iron ores metallization rate liquid phase metallic iron growth
下载PDF
Microstructure and Growth Kinetics of Silicide Coatings for TiAl Alloy
3
作者 黄磊 吴向清 +1 位作者 XIE Faqin WANG Su 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第2期245-249,共5页
In order to improve the oxidation resistance of Ti Al alloy, silicide coatings were prepared by pack cementation method at 1273, 1323, and 1373 K for 1-3 hours. Scanning electron microscopy(SEM), energy dispersive s... In order to improve the oxidation resistance of Ti Al alloy, silicide coatings were prepared by pack cementation method at 1273, 1323, and 1373 K for 1-3 hours. Scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and X-ray diffraction(XRD) were employed to investigate the microstructures and phase constitutions of the coatings. The experimental results show that all silicon deposition coatings have multi-layer structure. The microstructure and composition of silicide coatings strongly depend on siliconizing temperatures. In order to investigate the rate controlling step of pack siliconizing on Ti Al alloy, coating growth kinetics was analyzed by measuring the mass gains per unit area of silicided samples as a function of time and temperature. The results showed that the rate controlling step was gas-phase diffusion step and the growth rate constant(k) ranged from 1.53 mg^2/(cm^4·h^2) to 2.3 mg^2/(cm^4·h^2). Activation energy(Q) for the process was calculated as 109 k J/mol, determined by Arrhenius' equation: k = k0 exp[–Q/(RT)]. 展开更多
关键词 pack cementation coating titanium aluminide siliconizing kinetics activation energy rate controlling step
下载PDF
Mechanical research and development of a monocrystalline silicon neutron beam window for CSNS
4
作者 周良 屈化民 《Chinese Physics C》 SCIE CAS CSCD 2015年第9期69-73,共5页
The monocrystalline silicon neutron beam window is one of the key components of a neutron spectrom- eter. Monocrystalline silicon is brittle and its strength is generally described by a Weibull distribution due to the... The monocrystalline silicon neutron beam window is one of the key components of a neutron spectrom- eter. Monocrystalline silicon is brittle and its strength is generally described by a Weibull distribution due to the material inhomogeneity. The window is designed not simply according to the mean strength but also according to the survival rate. The total stress of the window is stress-linearized into a combination of membrane stress and bending stress by finite element analysis. The window is a thin circular plate, so bending deformation is the main cause of failure and tensile deformation is secondary and negligible. Based on the Weibull distribution of bending strength of monocrystalline silicon, the optimized neutron beam window is designed to be 1.5 mm thick. Its survival rate is 0.9994 and its transmittance is 0.98447, which meets both physical and mechanical requirements. 展开更多
关键词 neutron beam window monocrystalline silicon China Spallation Neutron Source the survival rate neutron spectrometers
原文传递
Study of silicon pixel sensor for synchrotron radiation detection
5
作者 李贞杰 贾云丛 +2 位作者 胡凌飞 刘鹏 殷华湘 《Chinese Physics C》 SCIE CAS CSCD 2016年第3期90-98,共9页
The silicon pixel sensor(SPS) is one of the key components of hybrid pixel single-photon-counting detectors for synchrotron radiation X-ray detection(SRD). In this paper, the design, fabrication, and characterizat... The silicon pixel sensor(SPS) is one of the key components of hybrid pixel single-photon-counting detectors for synchrotron radiation X-ray detection(SRD). In this paper, the design, fabrication, and characterization of SPSs for single beam X-ray photon detection is reported. The designed pixel sensor is a p+-in-n structure with guard-ring structures operated in full-depletion mode and is fabricated on 4-inch, N type, 320 μm thick, high-resistivity silicon wafers by a general Si planar process. To achieve high energy resolution of X-rays and obtain low dark current and high breakdown voltage as well as appropriate depletion voltage of the SPS, a series of technical optimizations of device structure and fabrication process are explored. With optimized device structure and fabrication process,excellent SPS characteristics with dark current of 2 n A/cm^2, full depletion voltage 〈 50 V and breakdown voltage〉 150 V are achieved. The fabricated SPSs are wire bonded to ASIC circuits and tested for the performance of X-ray response to the 1W2 B synchrotron beam line of the Beijing Synchrotron Radiation Facility. The measured S-curves for SRD demonstrate a high discrimination for different energy X-rays. The extracted energy resolution is high(〈 20% for X-ray photon energy 〉 10 keV) and the linear properties between input photo energy and the equivalent generator amplitude are well established. It confirmed that the fabricated SPSs have a good energy linearity and high count rate with the optimized technologies. The technology is expected to have a promising application in the development of a large scale SRD system for the Beijing Advanced Photon Source. 展开更多
关键词 synchrotron X-ray silicon pixel sensor dark current energy resolution count rate
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部