Ancient Yunnan was one of the most significant regions along China’s ancient“Southern Silk Road.”During the Nanzhao period(738–902)of the late Tang Dynasty,Yunnan’s silk-weaving industry underwent a qualitative l...Ancient Yunnan was one of the most significant regions along China’s ancient“Southern Silk Road.”During the Nanzhao period(738–902)of the late Tang Dynasty,Yunnan’s silk-weaving industry underwent a qualitative leap as skilled silk craftsmen from the Bashu area migrated to Yunnan and introduced mulberry planting,silkworm breeding,and advanced silk-weaving techniques from Sichuan to the region.Consequently,people in Yunnan gradually acquired expertise in brocade weaving and embroidery.Many even mastered complex silk-weaving techniques.The development and progress of the silk-weaving industry in the ancient Yunnan region were intricately linked to the economic function and value of silk as both a commodity and currency along the“Southern Silk Road.”The local government in ancient Yunnan was greatly motivated by the economic interests brought by the development of silk-related industries and recognized the significance of developing the local silk industry.They even initiated a campaign to capture skilled silk craftsmen from Sichuan,aiming to foster the growth of the silk-weaving industry in Yunnan.After years of dedicated efforts from the local government in ancient Yunnan,the region emerged as a significant hub for silk production along China’s ancient“Southern Silk Road.”Despite the devastation caused by the wars in other parts of the country,Yunnan’s silk industry continued to thrive and provide ample silk products to sustain trade along this renowned route.In the contemporary era,amidst the decline of the silk-weaving industry in eastern China,Yunnan has proposed an industrial development strategy known as“relocating the silk-weaving industry from east to west.”This involves introducing advanced silk production techniques from the eastern regions into Yunnan to enhance and enrich its local silk industry,thereby establishing it as a traditional national sector and securing a competitive position within the global silk market.The historical experience of Yunnan’s silk industry demonstrated that economic development opportunities can only be seized through proactive endeavors rather than passive anticipation.The modern Yunnan silk industry,which upholds its historical traditions,continues to actively engage in international high-end technical cooperation,thus ensuring the enduring vitality of the ancient“Southern Silk Road.”展开更多
In this paper, the main goal is to prepare silk fibroin nano-fiber, which is used for regenerated tissue applications. Silk scaffold nano-fibers made by electro-spinning technology can be used in regenerated tissue ap...In this paper, the main goal is to prepare silk fibroin nano-fiber, which is used for regenerated tissue applications. Silk scaffold nano-fibers made by electro-spinning technology can be used in regenerated tissue applications. The purpose of the research is to prepare a silk-fibroin nano-fiber solution for potential applications in tissue engineering. Using a degumming process, pure silk fibroin protein is extracted from silk cocoons. The protein solution for fibroin is purified, and the protein content is determined. The precise chemical composition, exact temperature, time, voltage, distance, ratio, and humidity all have a huge impact on degumming, solubility, and electro-spinning nano-fibers. The SEM investigates the morphology of silk fibroin nano-fibres at different magnifications. It also reveals the surface condition, fiber orientation, and fiber thickness of the silk fibroin nano-fiber. The results show that regenerated silk fibroin and nano-fiber can be used in silk fibroin scaffolds for various tissue engineering applications.展开更多
The self-powered tissue engineering scaffold with good biocompatibility is of great significance for stimulating nerve cell growth.In this study,silk fibroin(SF)-based fibers with regulatable structure and piezoelectr...The self-powered tissue engineering scaffold with good biocompatibility is of great significance for stimulating nerve cell growth.In this study,silk fibroin(SF)-based fibers with regulatable structure and piezoelectric performance are fabricated by dry-spinning and post-treatment.The concentration of SF and calcium ion in spinning dope and the post-treatment affect the conformation transition and crystallinity of SF.As a result,the SF fibers exhibit high piezoelectric coefficient d_(33)(3.24 pm/V)and output voltage(~27 V).Furthermore,these piezoelectric fibers promote the growth of PC-12 cells,demonstrating the promising potential for nerve repair and other energy harvester.展开更多
Regenerative medicine progress is based on the development of cell and tissue bioengineering. One of the aims of tissue engineering is the development of scaffolds, which should substitute the functions of the replace...Regenerative medicine progress is based on the development of cell and tissue bioengineering. One of the aims of tissue engineering is the development of scaffolds, which should substitute the functions of the replaced organ after their implantation into the body. The tissue engineering material must meet a range of requirements, including biocompatibility, mechanical strength, and elasticity. Furthermore, the materials have to be attractive for cell growth: stimulate cell adhesion, migration, proliferation and differentiation. One of the natural biomaterials is silk and its component (silk fibroin). An increasing number of scientists in the world are studying silk and silk fibroin. The purpose of this review article is to provide information about the properties of natural silk (silk fibroin), as well as its manufacture and clinical application of each configuration of silk fibroin in medicine. Materials and research methods. Actual publications of foreign authors on resources PubMed, Medline, E-library have been analyzed. The selection criteria were materials containing information about the structure and components of silk, methods of its production in nature. This article placed strong emphasis on silk fibroin, the ways of artificial modification of it for use in various sphere of medicine.展开更多
Silkworms and spiders are capable of generating fibers that are both highly durable and elastic in a short span of time,using a silk solution stored within their bodies at room temperature and normal atmospheric press...Silkworms and spiders are capable of generating fibers that are both highly durable and elastic in a short span of time,using a silk solution stored within their bodies at room temperature and normal atmospheric pressure.The dragline silk fiber,which is essentially a spider's lifeline,surpasses the strength of a steel wire of equivalent thickness.Regrettably,humans have yet to replicate this process to produce fibers with similar high strength and elasticity in an eco-friendly manner.Therefore,it is of utmost importance to thoroughly comprehend the extraordinary structure and fibrillation mechanism of silk,and leverage this understanding in the manufacturing of high-strength,high-elasticity fibers.This review will delve into the recent progress in comprehending the structure of silks derived from silkworms and spiders,emphasizing the distinctive attributes of solidstate NMR.展开更多
Carbon peak and carbon neutrality(dual-carbon)are important targets for the international response to climate change.The Silk Road Economic Belt is a strategic resource region and is important for future ecological en...Carbon peak and carbon neutrality(dual-carbon)are important targets for the international response to climate change.The Silk Road Economic Belt is a strategic resource region and is important for future ecological environment and tourism development.Based on the“dual-carbon”targets,the Single index quantification,Multiple index synthesis,and Poly-criteria integration evaluation model were used in this study to measure the coordinated development index of the ecological environment,public service,and tourism economy along the Silk Road Economic Belt and to analyze its spatial and temporal evolution.Further,it explores the dynamic evolution and development trend of the three systems using the Kernel Density and Grey Markov Prediction Model.The results show that the coordinated development index along this region needs to be improved during the study period.Furthermore,the coordinated development index of the Southwest region is relatively higher than that of the Northwest region.From the development trend of the three systems,all of them develop in a stable manner;however,the tourism economy system is easily affected by external disturbances.The coordinated development index of the three systems changes dynamically and tends to be in a good state of coordination.There is a certain spatial and temporal heterogeneity.The gravity center of the coordinated development index has been in the Southwest region.During the forecast period,the coordinated development index along this region will improve significantly,while insufficient and unbalanced development will continue.展开更多
Estimated ocean subsurface fields derived from satellite observations provide potential data sources for operational marine environmental monitoring and prediction systems.This study employs a statistic regression rec...Estimated ocean subsurface fields derived from satellite observations provide potential data sources for operational marine environmental monitoring and prediction systems.This study employs a statistic regression reconstruction method,in combination with domestic autonomous sea surface height and sea surface temperature observations from the Haiyang-2(HY-2)satellite fusion data,to establish an operational quasi-realtime three-dimensional(3D)temperature and salinity products over the Maritime Silk Road.These products feature a daily temporal resolution and a spatial resolution of 0.25°×0.25°and exhibit stability and continuity.We have demonstrated the accuracy of the reconstructed thermohaline fields in capturing the 3D thermohaline variations through comprehensive statistical evaluations,after comparing them against Argo observations and ocean analysis data from 2022.The results illustrate that the reconstructed fields effectively represent seasonal variations in oceanic subsurface structures,along with structural changes resulting from mesoscale processes,and the upper ocean’s responses to tropical cyclones.Furthermore,the incorporation of HY-2 satellite observations notably enhances the accuracy of temperature and salinity reconstructions in the Northwest Pacific Ocean and marginally improves salinity reconstruction accuracy in the North Indian Ocean when compared to the World Ocean Atlas 2018 monthly climatology thermohaline fields.As a result,the reconstructed product holds promise for providing quasi-real-time 3D temperature and salinity field information to facilitate fast decisionmaking during emergencies,and also offers foundational thermohaline fields for operational ocean reanalysis and forecasting systems.These contributions enhance the safety and stability of ocean subsurface activities and navigation.展开更多
The silk fabrics were matching dyed with three natural edible pigments(red rice red,ginger yellow and gardenia blue).By investigating the dyeing rates and lifting properties of these pigments,it was observed that thei...The silk fabrics were matching dyed with three natural edible pigments(red rice red,ginger yellow and gardenia blue).By investigating the dyeing rates and lifting properties of these pigments,it was observed that their compatibilities were excellent in the dyeing process:dye dosage 2.5%(omf),mordant alum dosage 2.0%(omf),dyeing temperature 80℃and dyeing time 40 min.The silk fabrics dyed with secondary colors exhibited vibrant and vivid color owing to the remarkable lightness and chroma of ginger yellow.However,gardenia blue exhibited multiple absorption peaks in the visible light range,resulting in significantly lower lightness and chroma for the silk fabrics dyed with tertiary colors,thus making it suitable only for matte-colored fabrics with low chroma levels.In addition,the silk fabrics dyed with these three pigments had a color fastness that exceeded grade 3 in resistance to perspiration,soap washing and light exposure,indicating acceptable wearing properties.The dyeing process described in this research exhibited a wide range of potential applications in matching dyeing of protein-based textiles with natural colorants.展开更多
Silk is widely used in the production of high-quality textiles.At the same time,the amount of silk textiles no longer in use and discarded is increasing,resulting in significant waste and pollution.This issue is of gr...Silk is widely used in the production of high-quality textiles.At the same time,the amount of silk textiles no longer in use and discarded is increasing,resulting in significant waste and pollution.This issue is of great concern in many countries where silk is used.Hydrogen peroxide as a naturally occurring compound is an important indicator of detection in both biology and the environment.This study aims to develop a composite fiber with hydrogen peroxide-sensing properties using discarded silk materials.To achieve this goal,firstly,polydopamine(PDA)was used to encapsulate the ZnFe_(2)O_(4) NPs to achieve the improvement of dispersion,and then regenerated silk fibroin(RSF)and PDA@ZnFe_(2)O_(4)/RSF hybrid fibers are prepared by wet spinning.Research has shown that PDA@ZnFe_(2)O_(4)/RSF demonstrates exceptional sensitivity,selectivity,and stability in detecting hydrogen peroxide,while maintaining high mechanical strength.Furthermore,the complete hybridization of PDA@ZnFe_(2)O_(4) with silk fibroin not only results in the combination of the durability of silk fibroin and PDA@ZnFe_(2)O_(4)’s rigidity,ensuring a reliable service life,but also makes PDA@ZnFe_(2)O_(4)/RSF exhibit excellent catalytic activity and biocompatibility.Therefore,the composite fiber exhibits exceptional mechanical properties and reliable hydrogen peroxide sensing capabilities,making it a promising material for biological and medical applications.展开更多
JILI silk is a type of silk produced in Jili Village,Nanxun Town,Nanxun District,Huzhou City in east China’s Zhejiang Province.Jili Village has been producing silk since the village was established in the late Yuan D...JILI silk is a type of silk produced in Jili Village,Nanxun Town,Nanxun District,Huzhou City in east China’s Zhejiang Province.Jili Village has been producing silk since the village was established in the late Yuan Dynasty(1271-1368).Jili silk is characterized by being stretchy,soft and fine with an even thickness and shiny white color.With these features,Jili silk is widely recognized in China and across the world.展开更多
Background:Green tea,mulberry leaf and corn silk are traditional herbs used in the prevention and treatment of diabetes in China for a long time,but their synergistic hypoglycemic effects and mechanisms remain unclear...Background:Green tea,mulberry leaf and corn silk are traditional herbs used in the prevention and treatment of diabetes in China for a long time,but their synergistic hypoglycemic effects and mechanisms remain unclear.Methods:The effective components of green tea,mulberry leaf and corn silk were extracted and enriched.Mixture design of experiments was used to study the influences of different combinations on the cell viability and glucose uptake level of L6 myoblasts,so as to determine the optimal synergistic hypoglycemic combination.The possible hypoglycemic mechanism of the optimal synergistic combination was explored by cytotoxicity assay,glucose uptake assay,and western blot.Results:Three polyphenol enrichment fractions of the herbs,30%ethanol elution fraction of green tea(GT),50%ethanol elution fraction of mulberry leaf(ML)and 60%ethanol elution fraction of corn silk(CS)were obtained.The antioxidant activities of GT-30%,ML-50%and CS-60%were superior to those of crude extracts,and showed strong potential inα-amylase andα-glucosidase inhibition activities.The optimal synergistic combination of crude extracts G7(crude extract of green tea:crude extract of mulberry leaf:crude extract of corn silk=1:5:3),polyphenol enrichment fractions R3(GT-30%:ML-50%:CS-60%=1:7:1)and monomers X2(epigallocatechin gallate:morusin:formononetin=3:1:2)were selected,respectively.G7,R3,and X2 showed promoting effects on the cell viability and glucose uptake of L6 myoblasts within the detected concentration range.In addition,G7,R3,and X2 could increase the expression levels of p-PI3K/PI3K and p-Akt/Akt in L6 myoblasts,and promote the translocation of Glut4,but G7 and R3 showed more significant effects.Conclusion:The synergistic hypoglycemic effects of green tea,mulberry leaf and corn silk had the characteristics of multiple-components and multiple-targets with p-PI3K/PI3K,p-Akt/Akt and the translocation of Glut4 signal pathways involved.The three traditional herbs might have the potential to be combined used for the prevention and treatment of diabetes based on the synergistic hypoglycemic effects.展开更多
The sites of Maritime Silk Road in Haikou City are composed of sites of navigation and trade,religious temples and stone monuments,urban construction and coastal defense scattered on the south bank of the Qiongzhou St...The sites of Maritime Silk Road in Haikou City are composed of sites of navigation and trade,religious temples and stone monuments,urban construction and coastal defense scattered on the south bank of the Qiongzhou Strait.They played a key role in the formation and shaping of the settlements in Haikou City,recorded the process of intercommunication and integration between Chinese civilization and other regional cultures,and witnessed the germination,flourishing and inheritance of Haikou’s unique marine culture.The mixture of points,lines and planes blends with the urban area and coastline of Haikou City in spatial distribution.In this paper,from the perspective of world cultural heritage,some suggestions for the protection planning of sites of Maritime Silk Road in Haikou City were proposed based on the analysis of historical and geographical background,comparison of domestic and foreign similar sites,and evaluation of cultural heritage value.展开更多
The aim of this study was to prepare silk fibroin/sodium alginate composite film containing curcumin by casting method.Orthogonal test was used to optimize the formulation according to the values of tensile strength a...The aim of this study was to prepare silk fibroin/sodium alginate composite film containing curcumin by casting method.Orthogonal test was used to optimize the formulation according to the values of tensile strength and elongation at break.The release of curcumin in the optimal film was studied in order to explore its application as wound dressing.The results showed that the optimum composition of curcumin/silk fibroin/sodium alginate composite film was as follows:Silk fibroin(70 mg/mL)2.7 g,sodium alginate(24 mg/mL)0.84 g,span 40(5.0 mg/mL)0.4 g,glycerol(3.75%,V/V)3 mL,curcumin(0.2 mg/mL)0.016 g.The optimum film showed the tensile strength and the elongation at break was(0.628±0.032)MPa and(0.794±0.046)%,respectively.展开更多
Two-dimensional covalent organic framework nanosheets(CONs)with ultrathin thickness and porous crystalline nature show substantial potential as novel membrane materials.However,bringing CONs materials into flexible me...Two-dimensional covalent organic framework nanosheets(CONs)with ultrathin thickness and porous crystalline nature show substantial potential as novel membrane materials.However,bringing CONs materials into flexible membrane form is a monumental challenge due to the limitation of weak interactions among CONs.Herein,one-dimensional silk nanofibrils(SNFs)from silkworm cocoon are designed as the nanobinder to link sulfonated CON(SCON)into robust SCON-based membrane through vacuum-filtration method.Ultrathin and large lateral-sized SCONs are synthesized via bottom-up interface-confined synthesis approach.Benefiting from high length-diameter ratio of SNF and rich functional groups in both SNF and SCON,two-dimensional(2D)SCONs are effectively connected together by physical entanglement and strong H-bond interactions.The resultant SCON/SNF membrane displays dense structure,high mechanical integrity and good stability.Importantly,the rigid porous nanochannels of SCON,high-concentration-SO3H groups insides the pores and H-bonds at SCON-SNF interfaces impart SCON/SNF membrane high-rate proton transfer pathways.Consequently,a superior proton conductivity of 365 mS cm^(-1)is achieved at 80C and 100%RH by SCON/SNF membrane.This work offers a promising approach for connecting 2D CON materials into flexible membrane as high-performance solid electrolyte for hydrogen fuel cell and may be applied in membrane-related other fields.展开更多
Micro-sized silicon anodes have shown much promise in large-scale industrial production of high-energy lithium batteries.However,large volume change(>300%)of silicon anodes causes severe particle pulverization and ...Micro-sized silicon anodes have shown much promise in large-scale industrial production of high-energy lithium batteries.However,large volume change(>300%)of silicon anodes causes severe particle pulverization and the formation of unstable solid electrolyte interphases during cycling,leading to rapid capacity decay and short cycle life of lithium-ion batteries.When addressing such issues,binder plays key roles in obtaining good structural integrity of silicon anodes.Herein,we report a biopolymer composite binder composed of rigid poly(acrylic acid)(PAA)and flexible silk fibroin(SF)tailored for micro-sized silicon anodes.The PAA/SF binder shows robust gradient binding energy via chemical interactions between carboxyl and amide groups,which can effectively accommodate large volume change of silicon.This PAA/SF binder also shows much stronger adhesion force and improved binding towards high-surface/defective carbon additives,resulting in better electrochemical stability and higher coulombic efficiency,than conventional PAA binder.As such,micro-sized silicon/carbon anodes fabricated with novel PAA/SF binder exhibit much better cyclability(up to 500 cycles at 0.5 C)and enhanced rate capability compared with conventional PAA-based anodes.This work provides new insights into the design of functional binders for high-capacity electrodes suffering from large volume change for the development of nextgeneration lithium batteries.展开更多
The bursting strength is an essential quality parameter of knit fabric. The fabric structure, weight, types of fibers, and fiber blend proportion influence the bursting strength parameter. The tenacity of polyester fi...The bursting strength is an essential quality parameter of knit fabric. The fabric structure, weight, types of fibers, and fiber blend proportion influence the bursting strength parameter. The tenacity of polyester fiber is better than cotton and spandex. The study focused on predicting knit fabric bursting strength test value using different fibers (cotton, polyester, and spandex) with varying percentages of the blend ratio. This study used fifteen categories of blended fabrics. The Pearson Correlation and the hypothetical ANOVA regression analysis were conducted to do the statistical significance test. The experimental result reveals that the bursting strength test result increased with the increased percentage of polyester and suggested a suitable regression equation. The dominance of the polyester fiber was observed throughout the experiment, i.e., the higher the polyester blend proportion, the higher the bursting strength value. The inclusion of polyester in blends can reduce the cost of fabric. The developed prediction model or equation can help the fabric manufacturer make appropriate decisions regarding getting the expected bursting strength. The researcher hopes that the findings from this study will motivate new researchers, advanced researchers, and the textile manufacturing industry.展开更多
The development of a method for the quantitative determination of the sericin content ratio(SCR)is urgently needed for silk refining and the purification of silk fibroin for biomedical applications.In this work,a seri...The development of a method for the quantitative determination of the sericin content ratio(SCR)is urgently needed for silk refining and the purification of silk fibroin for biomedical applications.In this work,a series of sericin/fibroin mixed samples with known SCRs were prepared by mixing initial samples of extracted sericin and fibroin from Bombyx mori silk.Significant differences were found in the contents of characteristic hydrophilic amino acids abundant in sericin and hydrophobic amino acids abundant in fibroin,and several linear relation-ships of SCR associated with the content ratios of Ser/Ala,Asp/Ala,Lys/Ala,Asp/Gly and Ser/Gly were estab-lished by amino acid analysis.Subsequently,the linear equation expressing SCR(%)as a function of the Asp to Ala content ratio X(%)was established as SCR=2.5634X−12.5587(R 2=0.9972).The results indicated that the SCR of degummed silks calculated by the equation is more objective and effective than the results obtained by the traditional weight loss method.Our study provides a novel approach for the sensitive and quantitative detection of the sericin content within the detection limit in unknown silks,which can contribute to quality control in the silk production process.展开更多
For Automatic Optical Inspection (AOI) machines that were introduced to Printed Circuit Board market more than five years ago, illumination technique and light devices are outdated. Images captured by old AO...For Automatic Optical Inspection (AOI) machines that were introduced to Printed Circuit Board market more than five years ago, illumination technique and light devices are outdated. Images captured by old AOI machines are not easy to be recognized by typical optical character recognition (OCR) algorithms, especially for dark silk. How to effectively increase silk recognition accuracy is indispensable for improving overall production efficiency in SMT plant. This paper uses fine tuned Character Region Awareness for Text Detection (CRAFT) method to build model for dark silk recognition. CRAFT model consists of a structure similar to U-net, followed by VGG based convolutional neural network. Continuous two-dimensional Gaussian distribution was used for the annotation of image segmentation. CRAFT model is good at recognizing different types of printed characters with high accuracy and transferability. Results show that with the help of CRAFT model, accuracy for OK board is 95% (error rate is 5%), and accuracy for NG board is 100% (omission rate is 0%).展开更多
From September 6 to 7,the 6th Silk Road(Dunhuang)International Cultural Expo was successful held in Dunhuang.The theme of this year's Dunhuang Expo was"Connecting with the World:Cultural Exchanges and Mutual ...From September 6 to 7,the 6th Silk Road(Dunhuang)International Cultural Expo was successful held in Dunhuang.The theme of this year's Dunhuang Expo was"Connecting with the World:Cultural Exchanges and Mutual Learning".It focused on facilitating cooperation under the Belt and Road Initiative(BRI),carrying forward Dunhuang culture.展开更多
Distinguished guests,Ladies and Gentlemen,friends!According to the agenda and entrusted by the Secretariat of China NGO Network for International Exchanges(CNIE),I now deliver a brief work report of the Silk Road NGO ...Distinguished guests,Ladies and Gentlemen,friends!According to the agenda and entrusted by the Secretariat of China NGO Network for International Exchanges(CNIE),I now deliver a brief work report of the Silk Road NGO Cooperation Network,also known as SIRONET.展开更多
文摘Ancient Yunnan was one of the most significant regions along China’s ancient“Southern Silk Road.”During the Nanzhao period(738–902)of the late Tang Dynasty,Yunnan’s silk-weaving industry underwent a qualitative leap as skilled silk craftsmen from the Bashu area migrated to Yunnan and introduced mulberry planting,silkworm breeding,and advanced silk-weaving techniques from Sichuan to the region.Consequently,people in Yunnan gradually acquired expertise in brocade weaving and embroidery.Many even mastered complex silk-weaving techniques.The development and progress of the silk-weaving industry in the ancient Yunnan region were intricately linked to the economic function and value of silk as both a commodity and currency along the“Southern Silk Road.”The local government in ancient Yunnan was greatly motivated by the economic interests brought by the development of silk-related industries and recognized the significance of developing the local silk industry.They even initiated a campaign to capture skilled silk craftsmen from Sichuan,aiming to foster the growth of the silk-weaving industry in Yunnan.After years of dedicated efforts from the local government in ancient Yunnan,the region emerged as a significant hub for silk production along China’s ancient“Southern Silk Road.”Despite the devastation caused by the wars in other parts of the country,Yunnan’s silk industry continued to thrive and provide ample silk products to sustain trade along this renowned route.In the contemporary era,amidst the decline of the silk-weaving industry in eastern China,Yunnan has proposed an industrial development strategy known as“relocating the silk-weaving industry from east to west.”This involves introducing advanced silk production techniques from the eastern regions into Yunnan to enhance and enrich its local silk industry,thereby establishing it as a traditional national sector and securing a competitive position within the global silk market.The historical experience of Yunnan’s silk industry demonstrated that economic development opportunities can only be seized through proactive endeavors rather than passive anticipation.The modern Yunnan silk industry,which upholds its historical traditions,continues to actively engage in international high-end technical cooperation,thus ensuring the enduring vitality of the ancient“Southern Silk Road.”
文摘In this paper, the main goal is to prepare silk fibroin nano-fiber, which is used for regenerated tissue applications. Silk scaffold nano-fibers made by electro-spinning technology can be used in regenerated tissue applications. The purpose of the research is to prepare a silk-fibroin nano-fiber solution for potential applications in tissue engineering. Using a degumming process, pure silk fibroin protein is extracted from silk cocoons. The protein solution for fibroin is purified, and the protein content is determined. The precise chemical composition, exact temperature, time, voltage, distance, ratio, and humidity all have a huge impact on degumming, solubility, and electro-spinning nano-fibers. The SEM investigates the morphology of silk fibroin nano-fibres at different magnifications. It also reveals the surface condition, fiber orientation, and fiber thickness of the silk fibroin nano-fiber. The results show that regenerated silk fibroin and nano-fiber can be used in silk fibroin scaffolds for various tissue engineering applications.
基金Project sponsored by the Basic Research Project of the Science and Technology Commission of Shanghai Municipality (Grant No.21JC1400100)the Shanghai Rising-Star Program (Grant No.22QA1400400)+1 种基金the National Natural Science Foundation of China (Grant No.52173031)the Oriental Talent Plan (Leading Talent Program,No.152)。
文摘The self-powered tissue engineering scaffold with good biocompatibility is of great significance for stimulating nerve cell growth.In this study,silk fibroin(SF)-based fibers with regulatable structure and piezoelectric performance are fabricated by dry-spinning and post-treatment.The concentration of SF and calcium ion in spinning dope and the post-treatment affect the conformation transition and crystallinity of SF.As a result,the SF fibers exhibit high piezoelectric coefficient d_(33)(3.24 pm/V)and output voltage(~27 V).Furthermore,these piezoelectric fibers promote the growth of PC-12 cells,demonstrating the promising potential for nerve repair and other energy harvester.
文摘Regenerative medicine progress is based on the development of cell and tissue bioengineering. One of the aims of tissue engineering is the development of scaffolds, which should substitute the functions of the replaced organ after their implantation into the body. The tissue engineering material must meet a range of requirements, including biocompatibility, mechanical strength, and elasticity. Furthermore, the materials have to be attractive for cell growth: stimulate cell adhesion, migration, proliferation and differentiation. One of the natural biomaterials is silk and its component (silk fibroin). An increasing number of scientists in the world are studying silk and silk fibroin. The purpose of this review article is to provide information about the properties of natural silk (silk fibroin), as well as its manufacture and clinical application of each configuration of silk fibroin in medicine. Materials and research methods. Actual publications of foreign authors on resources PubMed, Medline, E-library have been analyzed. The selection criteria were materials containing information about the structure and components of silk, methods of its production in nature. This article placed strong emphasis on silk fibroin, the ways of artificial modification of it for use in various sphere of medicine.
基金support by a JSPS KAKENHI,Grant-in-Aid for Scientific Research(C),Grant Number JP19K05609.
文摘Silkworms and spiders are capable of generating fibers that are both highly durable and elastic in a short span of time,using a silk solution stored within their bodies at room temperature and normal atmospheric pressure.The dragline silk fiber,which is essentially a spider's lifeline,surpasses the strength of a steel wire of equivalent thickness.Regrettably,humans have yet to replicate this process to produce fibers with similar high strength and elasticity in an eco-friendly manner.Therefore,it is of utmost importance to thoroughly comprehend the extraordinary structure and fibrillation mechanism of silk,and leverage this understanding in the manufacturing of high-strength,high-elasticity fibers.This review will delve into the recent progress in comprehending the structure of silks derived from silkworms and spiders,emphasizing the distinctive attributes of solidstate NMR.
基金supported by the Hebei Province Cultural and Artistic Science Planning and Tourism Research Project[Grant No.HB22-ZD002].
文摘Carbon peak and carbon neutrality(dual-carbon)are important targets for the international response to climate change.The Silk Road Economic Belt is a strategic resource region and is important for future ecological environment and tourism development.Based on the“dual-carbon”targets,the Single index quantification,Multiple index synthesis,and Poly-criteria integration evaluation model were used in this study to measure the coordinated development index of the ecological environment,public service,and tourism economy along the Silk Road Economic Belt and to analyze its spatial and temporal evolution.Further,it explores the dynamic evolution and development trend of the three systems using the Kernel Density and Grey Markov Prediction Model.The results show that the coordinated development index along this region needs to be improved during the study period.Furthermore,the coordinated development index of the Southwest region is relatively higher than that of the Northwest region.From the development trend of the three systems,all of them develop in a stable manner;however,the tourism economy system is easily affected by external disturbances.The coordinated development index of the three systems changes dynamically and tends to be in a good state of coordination.There is a certain spatial and temporal heterogeneity.The gravity center of the coordinated development index has been in the Southwest region.During the forecast period,the coordinated development index along this region will improve significantly,while insufficient and unbalanced development will continue.
基金The China-ASEAN Marine Cooperation Foundationthe Fundamental Research Funds for the Central Universities under contract No.B210203041+1 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province under contract No.KYCX23_0657the opening project of the Key Laboratory of Marine Environmental Information Technology of Ministry of Natural Resources under contract No.521037412.
文摘Estimated ocean subsurface fields derived from satellite observations provide potential data sources for operational marine environmental monitoring and prediction systems.This study employs a statistic regression reconstruction method,in combination with domestic autonomous sea surface height and sea surface temperature observations from the Haiyang-2(HY-2)satellite fusion data,to establish an operational quasi-realtime three-dimensional(3D)temperature and salinity products over the Maritime Silk Road.These products feature a daily temporal resolution and a spatial resolution of 0.25°×0.25°and exhibit stability and continuity.We have demonstrated the accuracy of the reconstructed thermohaline fields in capturing the 3D thermohaline variations through comprehensive statistical evaluations,after comparing them against Argo observations and ocean analysis data from 2022.The results illustrate that the reconstructed fields effectively represent seasonal variations in oceanic subsurface structures,along with structural changes resulting from mesoscale processes,and the upper ocean’s responses to tropical cyclones.Furthermore,the incorporation of HY-2 satellite observations notably enhances the accuracy of temperature and salinity reconstructions in the Northwest Pacific Ocean and marginally improves salinity reconstruction accuracy in the North Indian Ocean when compared to the World Ocean Atlas 2018 monthly climatology thermohaline fields.As a result,the reconstructed product holds promise for providing quasi-real-time 3D temperature and salinity field information to facilitate fast decisionmaking during emergencies,and also offers foundational thermohaline fields for operational ocean reanalysis and forecasting systems.These contributions enhance the safety and stability of ocean subsurface activities and navigation.
基金Fujian External Cooperation Project of Natural Science Foundation,China(No.2022I0042)。
文摘The silk fabrics were matching dyed with three natural edible pigments(red rice red,ginger yellow and gardenia blue).By investigating the dyeing rates and lifting properties of these pigments,it was observed that their compatibilities were excellent in the dyeing process:dye dosage 2.5%(omf),mordant alum dosage 2.0%(omf),dyeing temperature 80℃and dyeing time 40 min.The silk fabrics dyed with secondary colors exhibited vibrant and vivid color owing to the remarkable lightness and chroma of ginger yellow.However,gardenia blue exhibited multiple absorption peaks in the visible light range,resulting in significantly lower lightness and chroma for the silk fabrics dyed with tertiary colors,thus making it suitable only for matte-colored fabrics with low chroma levels.In addition,the silk fabrics dyed with these three pigments had a color fastness that exceeded grade 3 in resistance to perspiration,soap washing and light exposure,indicating acceptable wearing properties.The dyeing process described in this research exhibited a wide range of potential applications in matching dyeing of protein-based textiles with natural colorants.
基金supported by Guizhou Provincial Basic Research Program(Natural Science)(ZK[2024]574)Anshun University PhD Fund Project(No.asxybsjj202302)+1 种基金the National Synchrotron Radiation Laboratory(NSRL,Hefei,China)(No.2021-HLS-PT-004163)Shanghai Synchrotron Radiation Facility(SSRF,Shanghai,China)(No.2018-NFPS-PT-002700).
文摘Silk is widely used in the production of high-quality textiles.At the same time,the amount of silk textiles no longer in use and discarded is increasing,resulting in significant waste and pollution.This issue is of great concern in many countries where silk is used.Hydrogen peroxide as a naturally occurring compound is an important indicator of detection in both biology and the environment.This study aims to develop a composite fiber with hydrogen peroxide-sensing properties using discarded silk materials.To achieve this goal,firstly,polydopamine(PDA)was used to encapsulate the ZnFe_(2)O_(4) NPs to achieve the improvement of dispersion,and then regenerated silk fibroin(RSF)and PDA@ZnFe_(2)O_(4)/RSF hybrid fibers are prepared by wet spinning.Research has shown that PDA@ZnFe_(2)O_(4)/RSF demonstrates exceptional sensitivity,selectivity,and stability in detecting hydrogen peroxide,while maintaining high mechanical strength.Furthermore,the complete hybridization of PDA@ZnFe_(2)O_(4) with silk fibroin not only results in the combination of the durability of silk fibroin and PDA@ZnFe_(2)O_(4)’s rigidity,ensuring a reliable service life,but also makes PDA@ZnFe_(2)O_(4)/RSF exhibit excellent catalytic activity and biocompatibility.Therefore,the composite fiber exhibits exceptional mechanical properties and reliable hydrogen peroxide sensing capabilities,making it a promising material for biological and medical applications.
文摘JILI silk is a type of silk produced in Jili Village,Nanxun Town,Nanxun District,Huzhou City in east China’s Zhejiang Province.Jili Village has been producing silk since the village was established in the late Yuan Dynasty(1271-1368).Jili silk is characterized by being stretchy,soft and fine with an even thickness and shiny white color.With these features,Jili silk is widely recognized in China and across the world.
基金the grant from National Key Research and Development Program of China(Grant No.2021YFE0110000)the grant from Tianjin Municipal Science and Technology Foundation(Grant No.22JCYBJC00160).
文摘Background:Green tea,mulberry leaf and corn silk are traditional herbs used in the prevention and treatment of diabetes in China for a long time,but their synergistic hypoglycemic effects and mechanisms remain unclear.Methods:The effective components of green tea,mulberry leaf and corn silk were extracted and enriched.Mixture design of experiments was used to study the influences of different combinations on the cell viability and glucose uptake level of L6 myoblasts,so as to determine the optimal synergistic hypoglycemic combination.The possible hypoglycemic mechanism of the optimal synergistic combination was explored by cytotoxicity assay,glucose uptake assay,and western blot.Results:Three polyphenol enrichment fractions of the herbs,30%ethanol elution fraction of green tea(GT),50%ethanol elution fraction of mulberry leaf(ML)and 60%ethanol elution fraction of corn silk(CS)were obtained.The antioxidant activities of GT-30%,ML-50%and CS-60%were superior to those of crude extracts,and showed strong potential inα-amylase andα-glucosidase inhibition activities.The optimal synergistic combination of crude extracts G7(crude extract of green tea:crude extract of mulberry leaf:crude extract of corn silk=1:5:3),polyphenol enrichment fractions R3(GT-30%:ML-50%:CS-60%=1:7:1)and monomers X2(epigallocatechin gallate:morusin:formononetin=3:1:2)were selected,respectively.G7,R3,and X2 showed promoting effects on the cell viability and glucose uptake of L6 myoblasts within the detected concentration range.In addition,G7,R3,and X2 could increase the expression levels of p-PI3K/PI3K and p-Akt/Akt in L6 myoblasts,and promote the translocation of Glut4,but G7 and R3 showed more significant effects.Conclusion:The synergistic hypoglycemic effects of green tea,mulberry leaf and corn silk had the characteristics of multiple-components and multiple-targets with p-PI3K/PI3K,p-Akt/Akt and the translocation of Glut4 signal pathways involved.The three traditional herbs might have the potential to be combined used for the prevention and treatment of diabetes based on the synergistic hypoglycemic effects.
文摘The sites of Maritime Silk Road in Haikou City are composed of sites of navigation and trade,religious temples and stone monuments,urban construction and coastal defense scattered on the south bank of the Qiongzhou Strait.They played a key role in the formation and shaping of the settlements in Haikou City,recorded the process of intercommunication and integration between Chinese civilization and other regional cultures,and witnessed the germination,flourishing and inheritance of Haikou’s unique marine culture.The mixture of points,lines and planes blends with the urban area and coastline of Haikou City in spatial distribution.In this paper,from the perspective of world cultural heritage,some suggestions for the protection planning of sites of Maritime Silk Road in Haikou City were proposed based on the analysis of historical and geographical background,comparison of domestic and foreign similar sites,and evaluation of cultural heritage value.
基金funded by Livelihood Plan Project of Department of Science and Technology of Liaoning Province(2021JH2/10300069,2019-ZD-0845)Department of Education of Liaoning Province(LJKZ0918)National College Students’Innovation and Entrepreneurship Training Program(202210163013).
文摘The aim of this study was to prepare silk fibroin/sodium alginate composite film containing curcumin by casting method.Orthogonal test was used to optimize the formulation according to the values of tensile strength and elongation at break.The release of curcumin in the optimal film was studied in order to explore its application as wound dressing.The results showed that the optimum composition of curcumin/silk fibroin/sodium alginate composite film was as follows:Silk fibroin(70 mg/mL)2.7 g,sodium alginate(24 mg/mL)0.84 g,span 40(5.0 mg/mL)0.4 g,glycerol(3.75%,V/V)3 mL,curcumin(0.2 mg/mL)0.016 g.The optimum film showed the tensile strength and the elongation at break was(0.628±0.032)MPa and(0.794±0.046)%,respectively.
文摘Two-dimensional covalent organic framework nanosheets(CONs)with ultrathin thickness and porous crystalline nature show substantial potential as novel membrane materials.However,bringing CONs materials into flexible membrane form is a monumental challenge due to the limitation of weak interactions among CONs.Herein,one-dimensional silk nanofibrils(SNFs)from silkworm cocoon are designed as the nanobinder to link sulfonated CON(SCON)into robust SCON-based membrane through vacuum-filtration method.Ultrathin and large lateral-sized SCONs are synthesized via bottom-up interface-confined synthesis approach.Benefiting from high length-diameter ratio of SNF and rich functional groups in both SNF and SCON,two-dimensional(2D)SCONs are effectively connected together by physical entanglement and strong H-bond interactions.The resultant SCON/SNF membrane displays dense structure,high mechanical integrity and good stability.Importantly,the rigid porous nanochannels of SCON,high-concentration-SO3H groups insides the pores and H-bonds at SCON-SNF interfaces impart SCON/SNF membrane high-rate proton transfer pathways.Consequently,a superior proton conductivity of 365 mS cm^(-1)is achieved at 80C and 100%RH by SCON/SNF membrane.This work offers a promising approach for connecting 2D CON materials into flexible membrane as high-performance solid electrolyte for hydrogen fuel cell and may be applied in membrane-related other fields.
文摘Micro-sized silicon anodes have shown much promise in large-scale industrial production of high-energy lithium batteries.However,large volume change(>300%)of silicon anodes causes severe particle pulverization and the formation of unstable solid electrolyte interphases during cycling,leading to rapid capacity decay and short cycle life of lithium-ion batteries.When addressing such issues,binder plays key roles in obtaining good structural integrity of silicon anodes.Herein,we report a biopolymer composite binder composed of rigid poly(acrylic acid)(PAA)and flexible silk fibroin(SF)tailored for micro-sized silicon anodes.The PAA/SF binder shows robust gradient binding energy via chemical interactions between carboxyl and amide groups,which can effectively accommodate large volume change of silicon.This PAA/SF binder also shows much stronger adhesion force and improved binding towards high-surface/defective carbon additives,resulting in better electrochemical stability and higher coulombic efficiency,than conventional PAA binder.As such,micro-sized silicon/carbon anodes fabricated with novel PAA/SF binder exhibit much better cyclability(up to 500 cycles at 0.5 C)and enhanced rate capability compared with conventional PAA-based anodes.This work provides new insights into the design of functional binders for high-capacity electrodes suffering from large volume change for the development of nextgeneration lithium batteries.
文摘The bursting strength is an essential quality parameter of knit fabric. The fabric structure, weight, types of fibers, and fiber blend proportion influence the bursting strength parameter. The tenacity of polyester fiber is better than cotton and spandex. The study focused on predicting knit fabric bursting strength test value using different fibers (cotton, polyester, and spandex) with varying percentages of the blend ratio. This study used fifteen categories of blended fabrics. The Pearson Correlation and the hypothetical ANOVA regression analysis were conducted to do the statistical significance test. The experimental result reveals that the bursting strength test result increased with the increased percentage of polyester and suggested a suitable regression equation. The dominance of the polyester fiber was observed throughout the experiment, i.e., the higher the polyester blend proportion, the higher the bursting strength value. The inclusion of polyester in blends can reduce the cost of fabric. The developed prediction model or equation can help the fabric manufacturer make appropriate decisions regarding getting the expected bursting strength. The researcher hopes that the findings from this study will motivate new researchers, advanced researchers, and the textile manufacturing industry.
基金supported by the National Key Research and Development Program of China(2017YFC1103602).
文摘The development of a method for the quantitative determination of the sericin content ratio(SCR)is urgently needed for silk refining and the purification of silk fibroin for biomedical applications.In this work,a series of sericin/fibroin mixed samples with known SCRs were prepared by mixing initial samples of extracted sericin and fibroin from Bombyx mori silk.Significant differences were found in the contents of characteristic hydrophilic amino acids abundant in sericin and hydrophobic amino acids abundant in fibroin,and several linear relation-ships of SCR associated with the content ratios of Ser/Ala,Asp/Ala,Lys/Ala,Asp/Gly and Ser/Gly were estab-lished by amino acid analysis.Subsequently,the linear equation expressing SCR(%)as a function of the Asp to Ala content ratio X(%)was established as SCR=2.5634X−12.5587(R 2=0.9972).The results indicated that the SCR of degummed silks calculated by the equation is more objective and effective than the results obtained by the traditional weight loss method.Our study provides a novel approach for the sensitive and quantitative detection of the sericin content within the detection limit in unknown silks,which can contribute to quality control in the silk production process.
文摘For Automatic Optical Inspection (AOI) machines that were introduced to Printed Circuit Board market more than five years ago, illumination technique and light devices are outdated. Images captured by old AOI machines are not easy to be recognized by typical optical character recognition (OCR) algorithms, especially for dark silk. How to effectively increase silk recognition accuracy is indispensable for improving overall production efficiency in SMT plant. This paper uses fine tuned Character Region Awareness for Text Detection (CRAFT) method to build model for dark silk recognition. CRAFT model consists of a structure similar to U-net, followed by VGG based convolutional neural network. Continuous two-dimensional Gaussian distribution was used for the annotation of image segmentation. CRAFT model is good at recognizing different types of printed characters with high accuracy and transferability. Results show that with the help of CRAFT model, accuracy for OK board is 95% (error rate is 5%), and accuracy for NG board is 100% (omission rate is 0%).
文摘From September 6 to 7,the 6th Silk Road(Dunhuang)International Cultural Expo was successful held in Dunhuang.The theme of this year's Dunhuang Expo was"Connecting with the World:Cultural Exchanges and Mutual Learning".It focused on facilitating cooperation under the Belt and Road Initiative(BRI),carrying forward Dunhuang culture.
文摘Distinguished guests,Ladies and Gentlemen,friends!According to the agenda and entrusted by the Secretariat of China NGO Network for International Exchanges(CNIE),I now deliver a brief work report of the Silk Road NGO Cooperation Network,also known as SIRONET.