期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Liquefaction mitigation in silty soils using composite stone columns and dynamic compaction 被引量:4
1
作者 T.Shenthan R.Nashed +1 位作者 S.Thevanayagam G.R.Martin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2004年第1期39-50,共12页
The objective of this study is to develop an analytical methodology to evaluate the effectiveness of vibro stone column (S.C.) and dynamic compaction (D.C.) techniques supplemented with wick drains to densify and miti... The objective of this study is to develop an analytical methodology to evaluate the effectiveness of vibro stone column (S.C.) and dynamic compaction (D.C.) techniques supplemented with wick drains to densify and mitigate liquefaction in saturated sands and non-plastic silty soils. It includes the following: (i) develop numerical models to simulate and analyze soil densitication during S.C. installation and D.C. process, and (ii) identify parameters controlling post-improvement soil density in both cases, and (iii) develop design guidelines for densification of silty soils using the above techniques. An analytical procedure was developed and used to simulate soil response during S.C. and D.C. installations, and the results were compared with available case history data. Important construction design parameters and soil properties that affect the effectiveness of these techniques, and construction design choices suitable for sands and non-plastic silty soils were identified. The methodology is expected to advance the use of S.C. and D.C. in silty soils reducing the reliance on expensive field trials as a design tool. The ultimate outcome of this research will be design charts and design guidelines for using composite stone columns and composite dynamic compaction techniques in liquefaction mitigation of saturated silty soils. 展开更多
关键词 liquefaction mitigation silty soils composite stone columns dynamic compaction
下载PDF
Experimental study on the wave pressure of liquefied silty soil 被引量:2
2
作者 HUANG Zhe XU Guo-hui +1 位作者 MENG Qing-sheng WANG Gang 《Marine Science Bulletin》 CAS 2016年第1期29-42,共14页
A number of studies focus on the pore-water pressure in seabed under thewaves and seabed instability induced by liquefaction, but rarely on the wave pressureof liquefied soil. In this paper, flume tests were performed... A number of studies focus on the pore-water pressure in seabed under thewaves and seabed instability induced by liquefaction, but rarely on the wave pressureof liquefied soil. In this paper, flume tests were performed at varying wave heightsunder both conditions of liquefied and stable seabed. The total pressures equal to soilpressures and pore water pressures were measured and analyzed at each depth. Theresults showed that the liquefied seabed had little difference from the stable seabed onthe peak pressures. However, the pressure amplitude of the liquefied soil increased byseveral to 10 times and decreased faster with increasing soil depths, compared with thestable soil. According to the experiments and further analysis, an empirical equationbetween pressure amplitude of the liquefied soil and wave parameters was put forwardunder the flume test. The results provide a valuable reference for engineeringapplications. 展开更多
关键词 silty soil wave pressure LIQUEFACTION water flume test
下载PDF
Thermomechanical and Hydrous Effect of Heavy Fuel Oil in a Building Material Based on Silty Clayey Soil
3
作者 Ohindemi G.Yameogo Donzala D.Some +3 位作者 SiéKam Adamah Messan Takenori Hino DieudonnéJ.Bathiebo 《Journal of Civil Engineering and Architecture》 2023年第5期215-224,共10页
This study focuses on the use of heavy fuel oil in construction in Burkina Faso.Mixed with silty and/or clay soil,it is used as a coating to reinforce the walls of raw soil constructions which are very sensitive to wa... This study focuses on the use of heavy fuel oil in construction in Burkina Faso.Mixed with silty and/or clay soil,it is used as a coating to reinforce the walls of raw soil constructions which are very sensitive to water.The interest of this paper is to shed light on the thermomechanical and above all water effects of heavy fuel oil on a sample of silty clayey soil.To achieve this,we used heavy fuel oil added in different proportions to silty clayey soil,to make sample of bricks on which tests were carried out.At the end of the experimental tests carried out on materials made(bricks)with our soil sample,it appears that heavy fuel oil moderately reduces the mechanical resistance of bricks and slightly increases thermal diffusion through them.On the contrary,we note a very good water resistance of the bricks thanks to the heavy fuel oil,in particular their water absorption by capillarity.This confirms that the mixture of heavy fuel oil and a silty-clayey soil used as a coating makes it possible to prevent the infiltration of water into the walls of raw soil constructions.However,its use as a construction material does not guarantee very good mechanical resistance,and slightly increases thermal diffusion. 展开更多
关键词 Thermomechanical and hydrous effect heavy fuel oil building material silty clayey soil
下载PDF
Study on strength properties and soil behaviour type classification of Huanghe River Delta silts based on variable rate piezocone penetration test
4
作者 Yunuo Liu Guoqing Lin +3 位作者 Yan Zhang Shenggui Deng Lei Guo Tao Liu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第11期146-158,共13页
Fine-grained silt is widely distributed in the Huanghe River Delta(HRD)in China,and the sedimentary structure is complex,meaning that the clay content in the silt is variable.The piezocone penetration test(CPTu)is the... Fine-grained silt is widely distributed in the Huanghe River Delta(HRD)in China,and the sedimentary structure is complex,meaning that the clay content in the silt is variable.The piezocone penetration test(CPTu)is the most widely approved in situ test method.It can be used to invert soil properties and interpret soil behavior.To analyse the strength properties of surface sediments in the HRD,this paper evaluated the friction angle and its inversion formula through the CPTu penetration test and monotonic simple shear test and other soil unit experiments.The evaluation showed that the empirical formula proposed by Kulhawy and Mayne had better prediction and inversion effect.The HRD silts with clay contents of 9.2%,21.4%and 30.3%were selected as samples for the CPTu variable rate penetration test.The results show as follows.(1)The effects of the clay content on the tip resistance and the pore pressure of silt under different penetration rates were summarized.The tip resistance Q_t is strongly dependent on the clay content of the silt,the B_(q)value of the silt tends to 0 and is not significantly affected by the change of the CPTu penetration rate.(2)Five soil behavior type classification charts and three soil behavior type indexes based on CPTu data were evaluated.The results show that the soil behavior type classification chart based on soil behavior type index ISBT,the Robertson 2010 behavior type classification chart are more suitable for the silty soil in the HRD. 展开更多
关键词 Huanghe River Delta piezocone penetration test silty soils clay content friction angle soil behaviour type classification
下载PDF
Influence of soil liquefaction on the vertical mechanical behavior of submarine pipeline under the wave loading 被引量:1
5
作者 游启 许国辉 +3 位作者 王秀海 吕楚岫 刘志钦 孟庆生 《Marine Science Bulletin》 CAS 2015年第1期11-25,共15页
In this paper, the influence of soil liquefaction on the vertical pressure of submarine pipeline was investigated under the wave loading through the wave flume test. The experiment was set with the same waves on the l... In this paper, the influence of soil liquefaction on the vertical pressure of submarine pipeline was investigated under the wave loading through the wave flume test. The experiment was set with the same waves on the liquefied seabed and unliquefled seabed respectively, and the current pipeline vertical pressure was measured with the pressure transducers installed on the two opposite directions (i.e., straight up and straight down) at the same cross-section of the pipeline. The results showed that when the seabed was unliquefied, the two pressure curves varied periodically and overlapped completely, reaching the maximum and minimum at the same time respectively, and the resultant pressure fluctuated within a limited range. However, when the seabed was liquefied, the two pressure curves varied periodically, but they did not overlap completely. They did not reach the maximum (minimum) value at the same time either, and the resultant pressure fluctuated within a wider range. The experiment showed that the submarine stood higher resultant pressure in the vertical direction when the seabed was liquefied, which may cause the frequent sinking and fioatation of the pipeline, leading to its fatigue damage. 展开更多
关键词 silty soil LIQUEFACTION the vertical pressure of pipeline phase lag flumeexperiment
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部