In this paper, recovery of silver from anode slime of Sarcheshmeh copper complex in lran and subsequent synthesis of silver nanoparticles from leaching solution is investigated. Sarcheshmeh anode slime is mainly consi...In this paper, recovery of silver from anode slime of Sarcheshmeh copper complex in lran and subsequent synthesis of silver nanoparticles from leaching solution is investigated. Sarcheshmeh anode slime is mainly consisted ofCu, Ag, Pb and Se. Amount of Ag in the considered anode slime was 5.4% (by weight). The goal was to recover as much as possible Ag from anode slime at atmospheric pressure to synthesize Ag nanoparticles. Therefore, acid leaching was used for this purpose. The anode slime was leached with sulfuric and nitric acid from room to 90 ~C at different acid concentrations and the run which yielded the most recovery of Ag was selected for Ag nanoparticles synthesis. At this condition, Cu, Pb and Se are lea- ched as well as Ag. To separate Ag from leach solution HCI was added and silver was precipitated as AgCl which were then dissolved by ammonia solution. The Ag nanoparticles are synthesized from this solution by chemical reduction method by aid of sodium borohydride in the presence of PVP and PEG as stabilizers. The synthesized Ag nanoparticles showed a peak of 394 nm in UV-vis spectrum and TEM images showed a rather uniform Ag nanoparticles of 12 nm.展开更多
An efficient surface-enhanced Raman scattering(SERS) substrate is developed based on silver nanoparticles decorated anodic aluminum oxide(Ag/AAO).The AAO templates were fabricated using a two-step anodization approach...An efficient surface-enhanced Raman scattering(SERS) substrate is developed based on silver nanoparticles decorated anodic aluminum oxide(Ag/AAO).The AAO templates were fabricated using a two-step anodization approach,and silver nanoparticles(Ag NPs) were obtained by thermal decomposition of Ag nitrate in AAO.The structure of Ag/AAO hybrid substrate is characterized by scanning electron microscopy(SEM).The results show that the as-prepared SERS substrates consist of high-density Ag NPs with sizes of tens of nanometers.The Ag NPs are adsorbed on the surface of AAO template in the form of network structure which is called "hot spot".The SERS enhancement ability of the nanostructure is verified using thiram as probing molecules.The limit of detection is as low as 1×10-9 mol/L.The results indicate that the as-prepared substrate possesses excellent SERS sensitivity,high stability and uniformity enhancement.展开更多
基金the International Center for Science, High Technology & Environmental Sciences for financial support of this work (No. 1.213)
文摘In this paper, recovery of silver from anode slime of Sarcheshmeh copper complex in lran and subsequent synthesis of silver nanoparticles from leaching solution is investigated. Sarcheshmeh anode slime is mainly consisted ofCu, Ag, Pb and Se. Amount of Ag in the considered anode slime was 5.4% (by weight). The goal was to recover as much as possible Ag from anode slime at atmospheric pressure to synthesize Ag nanoparticles. Therefore, acid leaching was used for this purpose. The anode slime was leached with sulfuric and nitric acid from room to 90 ~C at different acid concentrations and the run which yielded the most recovery of Ag was selected for Ag nanoparticles synthesis. At this condition, Cu, Pb and Se are lea- ched as well as Ag. To separate Ag from leach solution HCI was added and silver was precipitated as AgCl which were then dissolved by ammonia solution. The Ag nanoparticles are synthesized from this solution by chemical reduction method by aid of sodium borohydride in the presence of PVP and PEG as stabilizers. The synthesized Ag nanoparticles showed a peak of 394 nm in UV-vis spectrum and TEM images showed a rather uniform Ag nanoparticles of 12 nm.
基金supported by the Scientific Research Project of Beijing Educational Committee(No.KM201410017005)the BIPT Breeding Project of Outstanding Young Teachers and Management Backbone 2013+2 种基金the Beijing University Academic Research Training Project(No.2014J00032)the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(No.CIT&TCD201304099)BIPT-BPOAL-2013
文摘An efficient surface-enhanced Raman scattering(SERS) substrate is developed based on silver nanoparticles decorated anodic aluminum oxide(Ag/AAO).The AAO templates were fabricated using a two-step anodization approach,and silver nanoparticles(Ag NPs) were obtained by thermal decomposition of Ag nitrate in AAO.The structure of Ag/AAO hybrid substrate is characterized by scanning electron microscopy(SEM).The results show that the as-prepared SERS substrates consist of high-density Ag NPs with sizes of tens of nanometers.The Ag NPs are adsorbed on the surface of AAO template in the form of network structure which is called "hot spot".The SERS enhancement ability of the nanostructure is verified using thiram as probing molecules.The limit of detection is as low as 1×10-9 mol/L.The results indicate that the as-prepared substrate possesses excellent SERS sensitivity,high stability and uniformity enhancement.