An efficient fluorescent probe 1 based on tricarbocyanine derivative was designed and synthesized,which can detect Ag^(+) in real industrial wastewater.UV-V is absorption and fluorescent emission spectra of probe 1 we...An efficient fluorescent probe 1 based on tricarbocyanine derivative was designed and synthesized,which can detect Ag^(+) in real industrial wastewater.UV-V is absorption and fluorescent emission spectra of probe 1 were carried out and indicated this probe can bind Ag^(+) via complexation reaction,then leading to a remarkable color change from blue to light red.Furthermore,probe 1 showed high sensitive performance and excellent selectivity toward Ag^(+) over other common metal ions in neutral pH.The sensing mechanism was proposed and further confirmed by ^(1)H NMR,which demonstrate analyte-induced destruction of the π-electron system could be shorten by the disruption of the pull-push π-conjugation system in probe 1.Moreover,a test strip was prepared by filter paper immersing in probe 1 solution,which further provide its potential application for trace Ag^(+) detection in real industrial wastewater.展开更多
A novel optical chemical sensor L was designed and synthesized for the determination of silver ions.The sensor L was derived from 1-naphthaldehyde and 3,4,5-tris(hexadecyloxy)benzohydrazide.The sensor L shows high sen...A novel optical chemical sensor L was designed and synthesized for the determination of silver ions.The sensor L was derived from 1-naphthaldehyde and 3,4,5-tris(hexadecyloxy)benzohydrazide.The sensor L shows high sensitivity and selectivity for Ag+detection in comparison to other metal cations(Mg^(2+),Ca^(2+),Al^(3+),Cr^(3+),Fe^(3+),Co^(2+),Ni^(2+),Cu^(2+),Zn^(2+),Cd^(2+),Hg^(2+),Pb^(2+))and has no significant response to other common metal cations.Upon addition of Ag+,the fluorescent emission of the sensor L was enhanced dramatically but other metal cations had no same response.The detection limit for Ag+was 1.2×10^(−7) mol/L.Therefore,the sensor L is useful for Ag+detection with some advantages including sensitivity,selectivity,simplicity and low-cost.展开更多
基金financially supported by National Natural Science Foundation of China(21808028)Science and Technology Foundation of Liaoning Province(2019-BS-047)the Fundamental Research Funds for the Central Universities(2018011013).
文摘An efficient fluorescent probe 1 based on tricarbocyanine derivative was designed and synthesized,which can detect Ag^(+) in real industrial wastewater.UV-V is absorption and fluorescent emission spectra of probe 1 were carried out and indicated this probe can bind Ag^(+) via complexation reaction,then leading to a remarkable color change from blue to light red.Furthermore,probe 1 showed high sensitive performance and excellent selectivity toward Ag^(+) over other common metal ions in neutral pH.The sensing mechanism was proposed and further confirmed by ^(1)H NMR,which demonstrate analyte-induced destruction of the π-electron system could be shorten by the disruption of the pull-push π-conjugation system in probe 1.Moreover,a test strip was prepared by filter paper immersing in probe 1 solution,which further provide its potential application for trace Ag^(+) detection in real industrial wastewater.
基金This work was supported by the National Natural Science Foundation of China(Nos.21064006,21262032 and 21161018)the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(No.IRT1177)+2 种基金the Natural Science Foundation of Gansu Province(No.1010RJZA018)the Youth Foundation of Gansu Province(No.2011GS04735)NWNU-LKQN-11-32.
文摘A novel optical chemical sensor L was designed and synthesized for the determination of silver ions.The sensor L was derived from 1-naphthaldehyde and 3,4,5-tris(hexadecyloxy)benzohydrazide.The sensor L shows high sensitivity and selectivity for Ag+detection in comparison to other metal cations(Mg^(2+),Ca^(2+),Al^(3+),Cr^(3+),Fe^(3+),Co^(2+),Ni^(2+),Cu^(2+),Zn^(2+),Cd^(2+),Hg^(2+),Pb^(2+))and has no significant response to other common metal cations.Upon addition of Ag+,the fluorescent emission of the sensor L was enhanced dramatically but other metal cations had no same response.The detection limit for Ag+was 1.2×10^(−7) mol/L.Therefore,the sensor L is useful for Ag+detection with some advantages including sensitivity,selectivity,simplicity and low-cost.