A simple electroless plating process was employed to prepare silver-coated glass frits for solar cells. The surface of the glass frits was modified with polyvinyl-pyrrolidone(PVP) before the electroless plating proc...A simple electroless plating process was employed to prepare silver-coated glass frits for solar cells. The surface of the glass frits was modified with polyvinyl-pyrrolidone(PVP) before the electroless plating process. Infrared(IR) spectroscopy,field emission scanning electron microscopy(FESEM), and x-ray diffraction(XRD) were used to characterize the PVP modified glass frits and investigate the mechanism of the modification process. It was found that the PVP molecules adsorbed on the glass frit surface and reduced the silver ions to the silver nanoparticles. Through epitaxial growth, these nanoparticles were uniformly deposited onto the surface of the glass frit. Silicon solar cells with this novel silver coating exhibited a photoelectric conversion efficiency increase of 0.33%. Compared with the electroless plating processes, this method provides a simple route to prepare silver-coated glass frits without introducing impurity ions.展开更多
Surface plasmon resonance of noble metal nanoparticles leads to the optical absorption enhancement effects,which have great potential applications in solar cell.By using the general numerical method of discrete dipole...Surface plasmon resonance of noble metal nanoparticles leads to the optical absorption enhancement effects,which have great potential applications in solar cell.By using the general numerical method of discrete dipole approximation (DDA),we study the absorption and scattering properties of two-dimensional square silver nanodisks (2D SSN) arrays on the single crystal silicon solar cell.Based on the effective reflective index model of the single crystal silicon solar cell,we investigate the optical enhancement absorption of light energy by varying the light incident direction,particle size,aspect ratio,and interparticle spacing of the silver nanodisks.The peak values and position of the optical extinction spectra of the 2D square arrays of noble metal nanodisks are obtained with the different array structures.展开更多
The ultraviolet(UV)light stability of silicon heterojunction(SHJ)solar cells should be addressed before large-scale production and applications.Introducing downshifting(DS)nanophosphors on top of solar cells that can ...The ultraviolet(UV)light stability of silicon heterojunction(SHJ)solar cells should be addressed before large-scale production and applications.Introducing downshifting(DS)nanophosphors on top of solar cells that can convert UV light to visible light may reduce UV-induced degradation(UVID)without sacrificing the power conversion efficiency(PCE).Herein,a novel composite DS nanomaterial composed of YVO_(4):Eu^(3+),Bi^(3+)nanoparticles(NPs)and AgNPs was synthesized and introduced onto the incident light side of industrial SHJ solar cells to achieve UV shielding.The YVO_(4):Eu^(3+),Bi^(3+)NPs and Ag NPs were synthesized via a sol-gel method and a wet chemical reduction method,respectively.Then,a composite structure of the YVO_(4):Eu^(3+),Bi^(3+)NPs decorated with Ag NPs was synthesized by an ultrasonic method.The emission intensities of the YVO_(4):Eu^(3+),Bi^(3+)nanophosphors were significantly enhanced upon decoration with an appropriate amount of~20 nm Ag NPs due to the localized surface plasmon resonance(LSPR)effect.Upon the introduction of LSPR-enhanced downshifting,the SHJ solar cells exhibited an~0.54%relative decrease in PCE degradation under UV irradiation with a cumulative dose of 45 k W h compared to their counterparts,suggesting excellent potential for application in UV-light stability enhancement of solar cells or modules.展开更多
Reported are the results of reduction the bending of thin crystalline silicon solar cells after printing and sintering of back electrode by changing the back electrode paste and adjusting the screen printing parameter...Reported are the results of reduction the bending of thin crystalline silicon solar cells after printing and sintering of back electrode by changing the back electrode paste and adjusting the screen printing parameters without effecting the electrical properties of the cell.Theory and experiments showed that the bending of the cell is changed with its thickness of substrate,the thinner cell,the more serious bending.The bending of the cell is decreased with the thickness decrease of the back contact paste.The substrate with the thickness of 190 μm printing with sheet aluminum paste shows a relatively lower bend compared with that of the substrate printing with ordinary aluminum paste,and the minimum bend is 0.55 mm which is reduced by 52%.展开更多
A plasmonic effect of silver nanoparticles (AgNPs) in dye-sensitized solar cells (DSSCs) is studied. In this investigation, the efficiency of dye-sensitized solar cells has been remarkably increased by infusion of syn...A plasmonic effect of silver nanoparticles (AgNPs) in dye-sensitized solar cells (DSSCs) is studied. In this investigation, the efficiency of dye-sensitized solar cells has been remarkably increased by infusion of synthesized silver nanoparticles into the TiO<sub>2</sub> photoanode. Rhodaminederivative RdS1 was synthesized by microwave-assisted condensation of hydrazide and 3-for-mylchromone. The synthesized silver nanoparticles were characterized with UV/Vis absorption spectroscopy and transmission electron microscopy. The interfacial charge transport phenomena of the dye-sensitized solar cell (DSSCs) are determined by electrochemical impedance spectroscopy and the corresponding efficiencies are calculated using current-voltage (I-V) curve. The solar cell photoanode with silver nanoparticles infused with RdS1 in titanium dioxide had the highest solar-to-electric power efficiency at 0.17%.展开更多
Silver(Ag)paste is widely used in semiconductor metallization,especially in silicon solar cells.Ag powder is the material with the highest proportion in Ag paste.The morphology and structure of Ag powder are crucial w...Silver(Ag)paste is widely used in semiconductor metallization,especially in silicon solar cells.Ag powder is the material with the highest proportion in Ag paste.The morphology and structure of Ag powder are crucial which determine its characteristics,especially for the sintering activity.In this work,a simple method was developed to synthesize a type of microcrystalline spherical Ag particles(SP-A)with internal pores and the structural changes and sintering behavior were thoroughly studied by combining ultra-small-angle X-ray scattering(USAXS),small-angle X-ray scattering(SAXS),in-situ heating X-ray diffraction(XRD),focused ion beam(FIB),and thermal analysis measurement.Due to the unique internal pores,the grain size of SP-A is smaller,and the coefficient of thermal expansion(CTE)is higher than that of traditional solid Ag particles.As a result,the sintering activity of SP-A is excellent,which can form a denser sintered body and form silver nanoparticles at the Ag–Si interface to improve silver silicon contact.Polycrystalline silicon solar cell built with SP-A obtained a low series resistance(Rs)and a high photoelectric conversion efficiency(PCE)of 19.26%.These fill a gap in Ag particle structure research,which is significant for the development of high-performance electronic Ag particles and efficient semiconductor devices.展开更多
All-solution-processed organic solar cells(OSCs)(from the bottom electrode to the top electrode)are highly attractive thanks to their low cost,lightweight and high-throughput production.However,achieving highly effici...All-solution-processed organic solar cells(OSCs)(from the bottom electrode to the top electrode)are highly attractive thanks to their low cost,lightweight and high-throughput production.However,achieving highly efficient all-solution-processed OSCs remains a significant challenge.One of the key issues is the lack of high-quality solution-processed electrode systems that can replace indium tin oxide(ITO)and vacuum-deposited metal electrodes.In this paper,we comprehensively review recent advances in all-solution-processed osCs,and classified the devices as the top electrode materials,including silver nanowires(AgNWs),conducting polymers and composite conducting materials.The correlation between electrode materials,properties of electrodes,and device performance in all-solution-processed OSCs is elucidated.In addition,the critical roles of the active layer and interface layer are also discussed.Finally,the prospects and challenges of all-solution-processed OSCs are presented.展开更多
High efficiency and flexible inverted organic solar cells have been fabricated using solution-processed silver nanowire/zinc oxide composite transparent electrodes. The transparent electrodes showed a low sheet resist...High efficiency and flexible inverted organic solar cells have been fabricated using solution-processed silver nanowire/zinc oxide composite transparent electrodes. The transparent electrodes showed a low sheet resistance of -13 ff).sq-1 and high transmittance of -93% as well as superior mechanical flexibility. Power conversion efficiencies of -7.57% and -7.21% were achieved for devices fabricated on glass and plastic substrate, respectively. Moreover, the flexible devices did not show any degradation in their performance even after being folded with a radius of-480 μm.展开更多
As the most promising alternative to traditional indium tin oxide (ITO), silver nanowire (AgNW) composite transparent electrodes with improved stabilities compared with that of the pristine AgNWs networks have bee...As the most promising alternative to traditional indium tin oxide (ITO), silver nanowire (AgNW) composite transparent electrodes with improved stabilities compared with that of the pristine AgNWs networks have been demonstrated in various devices. However, a stable AgNW/polymer composite as the bottom electrode for perovskite solar cells has not yet been reported. Here, a long-term stable, smooth AgNW composite with an antioxidant-modified chitosan polymer was developed. The modified polymer can effectively protect pristine AgNWs from side reactions with perovskite, whereas it does not block the carrier drift through the interface of the insulating polymer. The as-prepared AgNW/polymer composite electrode exhibited a root mean square roughness below 10 nm at a scan size of 50 μm × 50 μm, and its original sheet resistance did not change obviously after aging at 85 ℃ for 40 days in air. As a result, the perovskite solar cell employing the composite as the bottom electrode yielded a power conversion efficiency of 7.9%, which corresponds to nearly 75% of that of the reference device with an ITO electrode.展开更多
Silver nanoparticles(AgNPs) with well-distributed sizes were prepared by magnetron sputtering on slides and crystalline silicon(c-Si) solar cell following by annealing at different temperatures. The morphologies,optic...Silver nanoparticles(AgNPs) with well-distributed sizes were prepared by magnetron sputtering on slides and crystalline silicon(c-Si) solar cell following by annealing at different temperatures. The morphologies,optical and photovoltaic performance were investigated in detail. The spectroscopic result shows that two resonance peaks resulting from coupling effect among neighboring particles are difficult to obtain by other chemical methods.The photovoltaic performances reveal that the solar cells decorated with AgNPs significantly are degraded, including a maximal decrease of 20.4 % in short-circuit density and 53.9 % in energy conversion efficiency. The lowest efficiency achieved is 5.85 % for c-Si solar cells with AgNPs annealed at 500 ℃. The deterioration should result from the synergetic effect of the intrinsic absorption of single particle and coupling absorption between neighboring particles.展开更多
Conventional organic solar cell's (OSC) architectures, including rigid transparent substrate (Glass), conductive electrode (Indium tin oxide, ITO) and small working areas, are widely utilized in organic photovo...Conventional organic solar cell's (OSC) architectures, including rigid transparent substrate (Glass), conductive electrode (Indium tin oxide, ITO) and small working areas, are widely utilized in organic photovoltaic fields. However, such a structure as well as conventional spin-coating method obviously restrict their industrial application. In this article, we report the deposition of silver nanowires (AgNWs) on the flexible substrate by slot-die printing. The obtained AgNWs films exhibited a high transmittance and a low resistance, and were further used as the transparent conductive electrode ofOSCs. A typical conjugated polymer, poly[(2-5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c] [1,2,5]thiadiazole)] (PPDT2FBT), was used as the active material to fabricate large-area (7 cm2) solar cells by a slot-die coating process. The power conversion efficiency (PCE) could reach 1.87% initially and further increased to 3.04% by thermal annealing. Compared to the performance of reference cell on ITO substrate, the result indicated that the AgNWs could be developed as an alternative substitute of conductive electrode to fabricate the large-area flexible OSCs by roll-to-roll printing.展开更多
Organic solar cells(OSCs)have attracted much attention due to their advantages in fabricating flexible and semi-transparent devices.Especially,the light weight,flexibility and spectral adjustability make OSCs superior...Organic solar cells(OSCs)have attracted much attention due to their advantages in fabricating flexible and semi-transparent devices.Especially,the light weight,flexibility and spectral adjustability make OSCs superior to silicon,perovskite and other thin film based solar cells in applications of integrated photovoltaic devices and wearable electronics.In flexible and semi-transparent OSCs,transparent conducting electrodes(TCEs)play a key role in obtaining high performances.Among various TCEs,silver1 n anowire(AgNW)has become a promisi ng can didate due to its low sheet resistance,high optical transparency,excellent mechanical flexibility and solution processability.In this article,we review the recent advances in AgNW-based TCEs and their applications in the field of OSCs.Firstly,we introduce the general properties of AgNW including optoelectronic and mechanical characteristics.Secondly,the preparation methods of AgNW are discussed,along with some approaches on the optimization of AgNW to overcome the shortcomings of TCEs.Thirdly,we discuss the applications of AgNW as TCEs in fabricating flexible and semi-transparent OSCs,including the use of AgNW as bottom and top electrodes.Finally,we point out the challenges in AgNW-based TCEs and suggest several guidelines for preparing AgNW so as to meet the demands for the practical use of OSCs.展开更多
Nowadays,researches on developing new etching materials to optimize the Ag/Si contact interface in silicon solar cells(SSCs)are rare,which alleviates the further development of SSCs.In this study,silver tellurite(Ag2 ...Nowadays,researches on developing new etching materials to optimize the Ag/Si contact interface in silicon solar cells(SSCs)are rare,which alleviates the further development of SSCs.In this study,silver tellurite(Ag2 TeO3,monoclinic,P21/a(14))is synthesized and developed as an excellent etching material in SSCs.The Ag2TeO3 displays a low starting temperature of etching Si3N4 of^545°C,which is^160°C lower than that of PbO.Besides,by applying Ag2TeO3,conductive silver nanoparticles with a length of about 300~500 nm and a thickness of^50 nm form in the Ag/Si contact interface,which effectively reduces the Ag-Si contact resistance,and leads to a high solar cell efficiency of^18.4%.This study opens a new window for further enhancing the solar cell efficiency in the future.展开更多
In order to prove that the Te-based glass frit could be applied to Ag pastes to fabricate Ag electrode and elucidate the reactions among Ag,the frit,and the Si wafer,the Te-based glass and Ag pastes with different con...In order to prove that the Te-based glass frit could be applied to Ag pastes to fabricate Ag electrode and elucidate the reactions among Ag,the frit,and the Si wafer,the Te-based glass and Ag pastes with different contents of glass frit(0 wt%,1 wt%,3 wt%,5 wt%,and 7 wt%)were prepared.The microstructures of Ag electrodes and the phase analysis of interface between Ag electrodes and the Si wafer were investigated using scanning electron microscopy(SEM)coupled with energy-dispersive X-ray spectroscopy(EDX)and X-ray diffraction(XRD).When the content of glass frit is 3 wt%,the Ag electrode has good adhesion with Si wafer.What’s more,Ag crystallites and metallic Te could be found on the Si wafer.These results suggest that the TeO_(2) in the glass frit could react with SiNx anti-reflecting coating(ARC)and Si to serve as a medium for forming Ag crystallites.展开更多
Flexible transparent electrodes(FTEs) with robust mechanical stability are crucial for the industrial application of flexible organic solar cells(OSCs). However, their production remains challenging owing to the diffi...Flexible transparent electrodes(FTEs) with robust mechanical stability are crucial for the industrial application of flexible organic solar cells(OSCs). However, their production remains challenging owing to the difficulty in balancing the conductivity,transmittance, and adhesion of FTEs to substrates. Herein, we present the so-called “reinforced concrete” strategy which finetunes the structure of silver nanowires(Ag NWs)-based FTEs with polydopamine(PDA) possessing good adhesion properties and moderate reducibility. The PDA reduces Ag+to form silver nanoparticles(Ag NPs) which grow like “rivets” at the Ag NW junction sites;PDA stabilizes the Ag NW skeleton and improves the adhesion between the Ag NWs and polyethylene terephthalate(PET) substrate and interface layer. The obtained Ag NW:PDA:Ag NP FTE exhibits excellent optoelectronic properties and high mechanical stability. The resulting flexible OSCs exhibit 17.07% efficiency, high flexibility during 10,000 bending test cycles, and robust peeling stability. In addition, this “reinforced concrete”-like FTE provides great advantages for the production of large-area flexible OSCs, thereby paving a new way toward their commercial application.展开更多
Nanostructures of silicon are gradually becoming hot candidate due to outstanding capability for trapping light and improving conversion efficiency of solar cell. In this paper, silicon nanowires(SiNWs) and silicon ...Nanostructures of silicon are gradually becoming hot candidate due to outstanding capability for trapping light and improving conversion efficiency of solar cell. In this paper, silicon nanowires(SiNWs) and silicon inverted pyramid arrays(SiIPs) were introduced on surface of Gr-Si solar cell through silver and copper-catalyzed chemical etching, respectively. The effects of SiNWs and SiIPs on carrier lifetime, optical properties and efficiency of Gr-SiNWs and Gr-SiIPs solar cells were systematically analyzed. The results show that the inverted pyramid arrays have more excellent ability for balancing antireflectance loss and surface area enlargement. The power conversion efficiency(PCE) and carrier lifetime of Gr-SiIPs devices respectively increase by 62% and 34% by comparing with that of Gr-SiNWs solar cells. Finally, the Gr-SiIPs cell with PCE of 5.63% was successfully achieved through nitric acid doping. This work proposes a new strategy to introduce the inverted pyramid arrays for improving the performance of Gr-Si solar cells.展开更多
Water/alcohol soluble cathode interfacial materials(CIMs)are playing important roles in optoelectronic devices such as organic light emitting diodes,perovskite solar cells and organic solar cells(OSCs).Herein,n-doped ...Water/alcohol soluble cathode interfacial materials(CIMs)are playing important roles in optoelectronic devices such as organic light emitting diodes,perovskite solar cells and organic solar cells(OSCs).Herein,n-doped solution-processable single-wall carbon nanotubes(SWCNTs)-containing CIMs for OSCs are developed by dispersing SWCNTs to the typical CIMs perylene diimide(PDI)derivatives PDIN and PDINO.The Raman and X-ray photoelectron spectroscopy(XPS)measurement results illustrate the ndoped behavior of SWCNTs by PDIN/PDINO in the blend CIMs.The blended and n-doped SWCNTs can tune the work function and enhance the conductivity of the PDI-derivative/SWCNT(PDI-CNT)composite CIMs,and the composite CIMs can regulate and down-shift the work function of cathode,reduce the charge recombination,improve the charge extraction rate and enhance photovoltaic performance of the OSCs.High power conversion efficiency(PCE)of 17.1%and 17.7%are obtained for the OSCs based on PM6:Y6 and ternary PM6:Y6:PC_(71) BM respectively with the PDI-CNTcomposites CIMs.These results indicate that the ndoped SWCNT-containing composites,like other n-doped nanomaterials such as zero dimensional fullerenes and two dimensional graphenes,are excellent CIMs for OSCs and could find potential applications in other optoelectronic devices.展开更多
文摘A simple electroless plating process was employed to prepare silver-coated glass frits for solar cells. The surface of the glass frits was modified with polyvinyl-pyrrolidone(PVP) before the electroless plating process. Infrared(IR) spectroscopy,field emission scanning electron microscopy(FESEM), and x-ray diffraction(XRD) were used to characterize the PVP modified glass frits and investigate the mechanism of the modification process. It was found that the PVP molecules adsorbed on the glass frit surface and reduced the silver ions to the silver nanoparticles. Through epitaxial growth, these nanoparticles were uniformly deposited onto the surface of the glass frit. Silicon solar cells with this novel silver coating exhibited a photoelectric conversion efficiency increase of 0.33%. Compared with the electroless plating processes, this method provides a simple route to prepare silver-coated glass frits without introducing impurity ions.
基金supported by the National Natural Science Foundation of China under Grant No. G050104011004024the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. A0901040110018512026
文摘Surface plasmon resonance of noble metal nanoparticles leads to the optical absorption enhancement effects,which have great potential applications in solar cell.By using the general numerical method of discrete dipole approximation (DDA),we study the absorption and scattering properties of two-dimensional square silver nanodisks (2D SSN) arrays on the single crystal silicon solar cell.Based on the effective reflective index model of the single crystal silicon solar cell,we investigate the optical enhancement absorption of light energy by varying the light incident direction,particle size,aspect ratio,and interparticle spacing of the silver nanodisks.The peak values and position of the optical extinction spectra of the 2D square arrays of noble metal nanodisks are obtained with the different array structures.
基金supported by the National Natural Science Foundation of China (Grant Nos.52202276 and 51821002)the China Postdoctoral Science Foundation (Grant No.2022M712300)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No.22KJB480010)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘The ultraviolet(UV)light stability of silicon heterojunction(SHJ)solar cells should be addressed before large-scale production and applications.Introducing downshifting(DS)nanophosphors on top of solar cells that can convert UV light to visible light may reduce UV-induced degradation(UVID)without sacrificing the power conversion efficiency(PCE).Herein,a novel composite DS nanomaterial composed of YVO_(4):Eu^(3+),Bi^(3+)nanoparticles(NPs)and AgNPs was synthesized and introduced onto the incident light side of industrial SHJ solar cells to achieve UV shielding.The YVO_(4):Eu^(3+),Bi^(3+)NPs and Ag NPs were synthesized via a sol-gel method and a wet chemical reduction method,respectively.Then,a composite structure of the YVO_(4):Eu^(3+),Bi^(3+)NPs decorated with Ag NPs was synthesized by an ultrasonic method.The emission intensities of the YVO_(4):Eu^(3+),Bi^(3+)nanophosphors were significantly enhanced upon decoration with an appropriate amount of~20 nm Ag NPs due to the localized surface plasmon resonance(LSPR)effect.Upon the introduction of LSPR-enhanced downshifting,the SHJ solar cells exhibited an~0.54%relative decrease in PCE degradation under UV irradiation with a cumulative dose of 45 k W h compared to their counterparts,suggesting excellent potential for application in UV-light stability enhancement of solar cells or modules.
基金Yunnan Provincial Natural Science Fundation(2007E197 M)
文摘Reported are the results of reduction the bending of thin crystalline silicon solar cells after printing and sintering of back electrode by changing the back electrode paste and adjusting the screen printing parameters without effecting the electrical properties of the cell.Theory and experiments showed that the bending of the cell is changed with its thickness of substrate,the thinner cell,the more serious bending.The bending of the cell is decreased with the thickness decrease of the back contact paste.The substrate with the thickness of 190 μm printing with sheet aluminum paste shows a relatively lower bend compared with that of the substrate printing with ordinary aluminum paste,and the minimum bend is 0.55 mm which is reduced by 52%.
文摘A plasmonic effect of silver nanoparticles (AgNPs) in dye-sensitized solar cells (DSSCs) is studied. In this investigation, the efficiency of dye-sensitized solar cells has been remarkably increased by infusion of synthesized silver nanoparticles into the TiO<sub>2</sub> photoanode. Rhodaminederivative RdS1 was synthesized by microwave-assisted condensation of hydrazide and 3-for-mylchromone. The synthesized silver nanoparticles were characterized with UV/Vis absorption spectroscopy and transmission electron microscopy. The interfacial charge transport phenomena of the dye-sensitized solar cell (DSSCs) are determined by electrochemical impedance spectroscopy and the corresponding efficiencies are calculated using current-voltage (I-V) curve. The solar cell photoanode with silver nanoparticles infused with RdS1 in titanium dioxide had the highest solar-to-electric power efficiency at 0.17%.
基金support of the Soft Science Research Project of Guangdong Province(No.2017B030301013)the Guangdong Innovative Team Program(No.2013N080)the Guangdong Province Major Talent Introducing Program(No.2021QN020687).
文摘Silver(Ag)paste is widely used in semiconductor metallization,especially in silicon solar cells.Ag powder is the material with the highest proportion in Ag paste.The morphology and structure of Ag powder are crucial which determine its characteristics,especially for the sintering activity.In this work,a simple method was developed to synthesize a type of microcrystalline spherical Ag particles(SP-A)with internal pores and the structural changes and sintering behavior were thoroughly studied by combining ultra-small-angle X-ray scattering(USAXS),small-angle X-ray scattering(SAXS),in-situ heating X-ray diffraction(XRD),focused ion beam(FIB),and thermal analysis measurement.Due to the unique internal pores,the grain size of SP-A is smaller,and the coefficient of thermal expansion(CTE)is higher than that of traditional solid Ag particles.As a result,the sintering activity of SP-A is excellent,which can form a denser sintered body and form silver nanoparticles at the Ag–Si interface to improve silver silicon contact.Polycrystalline silicon solar cell built with SP-A obtained a low series resistance(Rs)and a high photoelectric conversion efficiency(PCE)of 19.26%.These fill a gap in Ag particle structure research,which is significant for the development of high-performance electronic Ag particles and efficient semiconductor devices.
基金the National Natural Science Foundation of China(52103221,52172048,22205130,52063010)Shandong Provincial Natural Science Foundation(ZR2021QB179,ZR2021QB024,ZR2021ZD06)+2 种基金Guangdong Natural Science Foundation of China(2023A1515012323,2023A1515010943,2022A1515110643)the National Key Research and Development Program of China(2022YFB4200400)funded by M0STthe Fundamental Research Funds of Shandong University.
文摘All-solution-processed organic solar cells(OSCs)(from the bottom electrode to the top electrode)are highly attractive thanks to their low cost,lightweight and high-throughput production.However,achieving highly efficient all-solution-processed OSCs remains a significant challenge.One of the key issues is the lack of high-quality solution-processed electrode systems that can replace indium tin oxide(ITO)and vacuum-deposited metal electrodes.In this paper,we comprehensively review recent advances in all-solution-processed osCs,and classified the devices as the top electrode materials,including silver nanowires(AgNWs),conducting polymers and composite conducting materials.The correlation between electrode materials,properties of electrodes,and device performance in all-solution-processed OSCs is elucidated.In addition,the critical roles of the active layer and interface layer are also discussed.Finally,the prospects and challenges of all-solution-processed OSCs are presented.
文摘High efficiency and flexible inverted organic solar cells have been fabricated using solution-processed silver nanowire/zinc oxide composite transparent electrodes. The transparent electrodes showed a low sheet resistance of -13 ff).sq-1 and high transmittance of -93% as well as superior mechanical flexibility. Power conversion efficiencies of -7.57% and -7.21% were achieved for devices fabricated on glass and plastic substrate, respectively. Moreover, the flexible devices did not show any degradation in their performance even after being folded with a radius of-480 μm.
基金This study was sponsored by 59th China Postdoctoral Science Foundation (No. 2016M590318), Special Financial Grant from China Postdoctoral Sdence Foundation (No. 2017T100270), National Natural Science Foundation of China (Nos. 51603043 and 51673042), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Leaming (No. TP2015002).
文摘As the most promising alternative to traditional indium tin oxide (ITO), silver nanowire (AgNW) composite transparent electrodes with improved stabilities compared with that of the pristine AgNWs networks have been demonstrated in various devices. However, a stable AgNW/polymer composite as the bottom electrode for perovskite solar cells has not yet been reported. Here, a long-term stable, smooth AgNW composite with an antioxidant-modified chitosan polymer was developed. The modified polymer can effectively protect pristine AgNWs from side reactions with perovskite, whereas it does not block the carrier drift through the interface of the insulating polymer. The as-prepared AgNW/polymer composite electrode exhibited a root mean square roughness below 10 nm at a scan size of 50 μm × 50 μm, and its original sheet resistance did not change obviously after aging at 85 ℃ for 40 days in air. As a result, the perovskite solar cell employing the composite as the bottom electrode yielded a power conversion efficiency of 7.9%, which corresponds to nearly 75% of that of the reference device with an ITO electrode.
基金financially supported by the National Natural Science Foundation of China (Nos. 51032005 and 51372180)the Key Technology Innovation Project of Hubei Province (No. 2013AAA005)the Research Fund for the Doctoral Program of Higher Education of China (No. 20130143130002)
文摘Silver nanoparticles(AgNPs) with well-distributed sizes were prepared by magnetron sputtering on slides and crystalline silicon(c-Si) solar cell following by annealing at different temperatures. The morphologies,optical and photovoltaic performance were investigated in detail. The spectroscopic result shows that two resonance peaks resulting from coupling effect among neighboring particles are difficult to obtain by other chemical methods.The photovoltaic performances reveal that the solar cells decorated with AgNPs significantly are degraded, including a maximal decrease of 20.4 % in short-circuit density and 53.9 % in energy conversion efficiency. The lowest efficiency achieved is 5.85 % for c-Si solar cells with AgNPs annealed at 500 ℃. The deterioration should result from the synergetic effect of the intrinsic absorption of single particle and coupling absorption between neighboring particles.
基金financially supported by the National Natural Science Foundation of China(Nos.21125420 and 21474022)the Chinese Academy of Sciences
文摘Conventional organic solar cell's (OSC) architectures, including rigid transparent substrate (Glass), conductive electrode (Indium tin oxide, ITO) and small working areas, are widely utilized in organic photovoltaic fields. However, such a structure as well as conventional spin-coating method obviously restrict their industrial application. In this article, we report the deposition of silver nanowires (AgNWs) on the flexible substrate by slot-die printing. The obtained AgNWs films exhibited a high transmittance and a low resistance, and were further used as the transparent conductive electrode ofOSCs. A typical conjugated polymer, poly[(2-5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c] [1,2,5]thiadiazole)] (PPDT2FBT), was used as the active material to fabricate large-area (7 cm2) solar cells by a slot-die coating process. The power conversion efficiency (PCE) could reach 1.87% initially and further increased to 3.04% by thermal annealing. Compared to the performance of reference cell on ITO substrate, the result indicated that the AgNWs could be developed as an alternative substitute of conductive electrode to fabricate the large-area flexible OSCs by roll-to-roll printing.
基金The authors ack no wledge the finan cial support from the Na-tional Key Research and Development Program of China(No.2019YFA0705900)funded by MOST the Youth Innovation Promo-tion Association CAS(No.2018037)+1 种基金the National Natural Science Foundation of China(No.21875263)the Basic and Applied Basic Research Major Program of Guangdong Provinee(No.2019B030302007).
文摘Organic solar cells(OSCs)have attracted much attention due to their advantages in fabricating flexible and semi-transparent devices.Especially,the light weight,flexibility and spectral adjustability make OSCs superior to silicon,perovskite and other thin film based solar cells in applications of integrated photovoltaic devices and wearable electronics.In flexible and semi-transparent OSCs,transparent conducting electrodes(TCEs)play a key role in obtaining high performances.Among various TCEs,silver1 n anowire(AgNW)has become a promisi ng can didate due to its low sheet resistance,high optical transparency,excellent mechanical flexibility and solution processability.In this article,we review the recent advances in AgNW-based TCEs and their applications in the field of OSCs.Firstly,we introduce the general properties of AgNW including optoelectronic and mechanical characteristics.Secondly,the preparation methods of AgNW are discussed,along with some approaches on the optimization of AgNW to overcome the shortcomings of TCEs.Thirdly,we discuss the applications of AgNW as TCEs in fabricating flexible and semi-transparent OSCs,including the use of AgNW as bottom and top electrodes.Finally,we point out the challenges in AgNW-based TCEs and suggest several guidelines for preparing AgNW so as to meet the demands for the practical use of OSCs.
基金financially supported by Soft Science Research Project of Guangdong Province(No.2017B030301013)Guangdong Innovative Team Program(No.2013N080)Shenzhen Science and Technology Research Grant(No.JSGG20170414163208757)。
文摘Nowadays,researches on developing new etching materials to optimize the Ag/Si contact interface in silicon solar cells(SSCs)are rare,which alleviates the further development of SSCs.In this study,silver tellurite(Ag2 TeO3,monoclinic,P21/a(14))is synthesized and developed as an excellent etching material in SSCs.The Ag2TeO3 displays a low starting temperature of etching Si3N4 of^545°C,which is^160°C lower than that of PbO.Besides,by applying Ag2TeO3,conductive silver nanoparticles with a length of about 300~500 nm and a thickness of^50 nm form in the Ag/Si contact interface,which effectively reduces the Ag-Si contact resistance,and leads to a high solar cell efficiency of^18.4%.This study opens a new window for further enhancing the solar cell efficiency in the future.
基金financially supported by the Guangdong Province University-Industry Cooperation Projects(No.2011B090400238)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘In order to prove that the Te-based glass frit could be applied to Ag pastes to fabricate Ag electrode and elucidate the reactions among Ag,the frit,and the Si wafer,the Te-based glass and Ag pastes with different contents of glass frit(0 wt%,1 wt%,3 wt%,5 wt%,and 7 wt%)were prepared.The microstructures of Ag electrodes and the phase analysis of interface between Ag electrodes and the Si wafer were investigated using scanning electron microscopy(SEM)coupled with energy-dispersive X-ray spectroscopy(EDX)and X-ray diffraction(XRD).When the content of glass frit is 3 wt%,the Ag electrode has good adhesion with Si wafer.What’s more,Ag crystallites and metallic Te could be found on the Si wafer.These results suggest that the TeO_(2) in the glass frit could react with SiNx anti-reflecting coating(ARC)and Si to serve as a medium for forming Ag crystallites.
基金supported by the National Natural Science Foundation of China (51922074, 22075194, 51820105003)the National Key Research and Development Program of China(2020YFB1506400)+3 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJA430010)the Tang Scholarthe Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)Collaborative Innovation Center of Suzhou Nano Science and Technology。
文摘Flexible transparent electrodes(FTEs) with robust mechanical stability are crucial for the industrial application of flexible organic solar cells(OSCs). However, their production remains challenging owing to the difficulty in balancing the conductivity,transmittance, and adhesion of FTEs to substrates. Herein, we present the so-called “reinforced concrete” strategy which finetunes the structure of silver nanowires(Ag NWs)-based FTEs with polydopamine(PDA) possessing good adhesion properties and moderate reducibility. The PDA reduces Ag+to form silver nanoparticles(Ag NPs) which grow like “rivets” at the Ag NW junction sites;PDA stabilizes the Ag NW skeleton and improves the adhesion between the Ag NWs and polyethylene terephthalate(PET) substrate and interface layer. The obtained Ag NW:PDA:Ag NP FTE exhibits excellent optoelectronic properties and high mechanical stability. The resulting flexible OSCs exhibit 17.07% efficiency, high flexibility during 10,000 bending test cycles, and robust peeling stability. In addition, this “reinforced concrete”-like FTE provides great advantages for the production of large-area flexible OSCs, thereby paving a new way toward their commercial application.
基金support of this work from the NSFC (Nos. 51504117, 61764009 and 51762043)Yunnan Applied Basic Research Project (No. Y0120150138)Research Fund of Yunnan Province Collaborative Innovation Center (No. 2014XTZS009)
文摘Nanostructures of silicon are gradually becoming hot candidate due to outstanding capability for trapping light and improving conversion efficiency of solar cell. In this paper, silicon nanowires(SiNWs) and silicon inverted pyramid arrays(SiIPs) were introduced on surface of Gr-Si solar cell through silver and copper-catalyzed chemical etching, respectively. The effects of SiNWs and SiIPs on carrier lifetime, optical properties and efficiency of Gr-SiNWs and Gr-SiIPs solar cells were systematically analyzed. The results show that the inverted pyramid arrays have more excellent ability for balancing antireflectance loss and surface area enlargement. The power conversion efficiency(PCE) and carrier lifetime of Gr-SiIPs devices respectively increase by 62% and 34% by comparing with that of Gr-SiNWs solar cells. Finally, the Gr-SiIPs cell with PCE of 5.63% was successfully achieved through nitric acid doping. This work proposes a new strategy to introduce the inverted pyramid arrays for improving the performance of Gr-Si solar cells.
基金supported by the National Natural Science Foundation of China(91633301,51863002,51973042)the Excellent Young Scientific and Technological Talents of Guizhou,China(QKHPTRC[2019]5652)the Cultivation and Innovation of New Academic Talents of Guizhou Institute of Technology(GZLGXM-05)。
文摘Water/alcohol soluble cathode interfacial materials(CIMs)are playing important roles in optoelectronic devices such as organic light emitting diodes,perovskite solar cells and organic solar cells(OSCs).Herein,n-doped solution-processable single-wall carbon nanotubes(SWCNTs)-containing CIMs for OSCs are developed by dispersing SWCNTs to the typical CIMs perylene diimide(PDI)derivatives PDIN and PDINO.The Raman and X-ray photoelectron spectroscopy(XPS)measurement results illustrate the ndoped behavior of SWCNTs by PDIN/PDINO in the blend CIMs.The blended and n-doped SWCNTs can tune the work function and enhance the conductivity of the PDI-derivative/SWCNT(PDI-CNT)composite CIMs,and the composite CIMs can regulate and down-shift the work function of cathode,reduce the charge recombination,improve the charge extraction rate and enhance photovoltaic performance of the OSCs.High power conversion efficiency(PCE)of 17.1%and 17.7%are obtained for the OSCs based on PM6:Y6 and ternary PM6:Y6:PC_(71) BM respectively with the PDI-CNTcomposites CIMs.These results indicate that the ndoped SWCNT-containing composites,like other n-doped nanomaterials such as zero dimensional fullerenes and two dimensional graphenes,are excellent CIMs for OSCs and could find potential applications in other optoelectronic devices.