With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controllin...With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.展开更多
Non-traditional lignocellulosic materials are a significant resource for producing high-value products,including nanocellulose.This work studied the nanocellulose obtention from chemical pulps of the two fast-growing ...Non-traditional lignocellulosic materials are a significant resource for producing high-value products,including nanocellulose.This work studied the nanocellulose obtention from chemical pulps of the two fast-growing bamboo species,Guadua trinii,and Guadua angustifolia.Chemical pulps were produced by soda-anthraquinone(S)pulping from both autohydrolysis-pretreated(H)and unpretreated bamboo chips.Autohydrolysis-pretreated(SHP)and unpretreated soda-anthraquinone(AQ)(SP)pulps were characterized by yield,Kappa number,alpha,beta,and gamma cellulose,degree of polymerization,water retention value,and crystallinity.The nanocellulose was produced by a sequential chemical oxidation treatment(2,2,6,6-tetramethylpiperidine-1-oxyl,TEMPO reagent)and mechanical nanofibrillation.Nanocellulose was characterized by carboxylic group content and viscosity.The results revealed that autohydrolysis pretreatment resulted in a higher hemicelluloses extraction in G.angustifolia.In contrast,the pulping yield of unpretreated samples was higher for G.trinii,and the soda-AQ pulps from this species exhibited better delignification than the autohydrolysis-pretreated pulps.The crystallinity index values of the obtained pulps were high(>80%),and the alpha-cellulose contents were similar.The viscosities of the aqueous nanocellulose suspensions were higher for the nanocellulose solutions obtained from the unpretreated soda-AQ pulps.Besides,nanocellulose from G.trinii unpretreated soda-AQ pulps had a higher rate of carboxylic groups.The results of this work are significant in assessing the potential of both bamboo species as a source of high-value products within the biorefinery framework because the viscosities of the aqueous nanocellulose suspensions depend on the size and shape of nanofibrils.It has significant importance for industrial unit operations and potential applications.展开更多
Spraying nanocellulose onto films provides a quick and scalable way to create free-standing films with exceptional consistency and customizable thickness. This method increases the application of nanocellulose films i...Spraying nanocellulose onto films provides a quick and scalable way to create free-standing films with exceptional consistency and customizable thickness. This method increases the application of nanocellulose films in various industries and satisfies the requirements of large-scale production. In the field of biomedicine, spray-coated free-standing nanocellulose films hold great promise for applications such as drug delivery, tissue engineering, wound healing, device coatings, and biosensing. They are excellent nanomaterials for a variety of biomedical applications due to their special qualities, including biocompatibility, high mechanical strength, porous structure, large surface area, and adaptability. This paper reviewed the detailed exposure of the spray coating process of nanocellulose suspension onto free- standing films and its biomedical applications.展开更多
Nanocellulose is a biodegradable, renewable, nonmeltable polymeric material that is insoluble in most solvents due to hydrogen bonding and crystallinity. Nanocellulose has attracted considerable attention in recent de...Nanocellulose is a biodegradable, renewable, nonmeltable polymeric material that is insoluble in most solvents due to hydrogen bonding and crystallinity. Nanocellulose has attracted considerable attention in recent decades owing to its environmental friendliness, wide availability, good biocompatibility, high crystallinity, and high Young's modulus. This review presents the recent achievements in preparation and applications of nanocellulose, including a discussion of the advantages and disadvantages of various preparation methods and a summary of the applications of nanocellulose in composite materials research. Finally, we examine the mounting evidence of more widespread potential applications of nanocellulose.展开更多
Multifunctional architecture with intriguing structural design is highly desired for realizing the promising performances in wearable sensors and flexible energy storage devices.Cellulose nanofiber(CNF)is employed for...Multifunctional architecture with intriguing structural design is highly desired for realizing the promising performances in wearable sensors and flexible energy storage devices.Cellulose nanofiber(CNF)is employed for assisting in building conductive,hyperelastic,and ultralight Ti_(3)C_(2)T_(x)MXene hybrid aerogels with oriented tracheid-like texture.The biomimetic hybrid aerogels are constructed by a facile bidirectional freezing strategy with CNF,carbon nanotube(CNT),and MXene based on synergistic electrostatic interaction and hydrogen bonding.Entangled CNF and CNT“mortars”bonded with MXene“bricks”of the tracheid structure produce good interfacial binding,and superior mechanical strength(up to 80%compressibility and extraordinary fatigue resistance of 1000 cycles at 50%strain).Benefiting from the biomimetic texture,CNF/CNT/MXene aerogel shows ultralow density of 7.48 mg cm^(-3)and excellent electrical conductivity(~2400 S m^(-1)).Used as pressure sensors,such aerogels exhibit appealing sensitivity performance with the linear sensitivity up to 817.3 kPa^(-1),which affords their application in monitoring body surface information and detecting human motion.Furthermore,the aerogels can also act as electrode materials of compressive solid-state supercapacitors that reveal satisfactory electrochemical performance(849.2 mF cm^(-2)at 0.8 mA cm^(-2))and superior long cycle compression performance(88%after 10,000 cycles at a compressive strain of 30%).展开更多
Naturally derived nanocellulose with unique physiochemical properties and giant potentials as renewable smart nanomaterials opens up endless novel advanced functional materials for multi-sensing applications.However,i...Naturally derived nanocellulose with unique physiochemical properties and giant potentials as renewable smart nanomaterials opens up endless novel advanced functional materials for multi-sensing applications.However,integrating inorganic functional two-dimensional carbon materials such as graphene has realized hybrid organic-inorganic nanocomposite materials with precisely tailored properties and multi-sensing abilities.Altogether,the affinity,stability,dispersibility,modification,and functionalization are some of the key merits permitting their synergistic interfacial interactions,which exhibited highly advanced multifunctional hybrid nanocomposites with desirable properties.Moreover,the high performance of such hybrids could be achievable through green and straightforward approaches.In this context,the review covered the most advanced nanocellulose-graphene hybrids,focusing on their synthetization,functionalization,fabrication,and multi-sensing applications.These hybrid films exhibited great potentials as a multifunctional sensing platform for numerous mechanical,environmental,and human bio-signals detections,mimicking,and in-situ monitoring.展开更多
This review provides a critical overview of the recent methods and processes developed for the production of cellulose nanoparticles with controlled morphology, structure and properties, and also sums up (1) the proce...This review provides a critical overview of the recent methods and processes developed for the production of cellulose nanoparticles with controlled morphology, structure and properties, and also sums up (1) the processes for the chemical modifications of these particles in order to prevent their re-aggregation during spray-drying procedures and to increase their reactivity, (2) the recent processes involved in the production of nanostructured biomaterials and composites. The structural and physical properties of those nanocelluloses, combined with their biodegradability, make them materials of choice in the very promising area of nanotechnology, likely subject to major commercial successes in the context of green chemistry. With a prospective and pioneering approach to the subject matter, various laboratories involved in this domain have developed bio-products now almost suitable to industrial applications;although some important steps remain to be overcome, those are worth been reviewed and supplemented. At this stage, several pilot units and demonstration plants have been built to improve, optimize and scale-up the processes developed at laboratory scale. Industrial reactors with suitable environment and modern control equipment are to be expected within that context. This review shall bring the suitable processing dimension that may be needed now, given the numerous reviews outlining the product potential attributes. An abundant literature database, close to 250 publications and patents, is provided, consolidating the various research and more practical angles.展开更多
Recently, in response to the major challenges in energy development and environmental issues, tremendous efforts are being devoted to developing electrochemical energy storage devices based on green sustainable resour...Recently, in response to the major challenges in energy development and environmental issues, tremendous efforts are being devoted to developing electrochemical energy storage devices based on green sustainable resources. As a class of green materials, nanocellulose(NC) has received extensive attention. In this review, we summarize the research progress of NC derived materials in electrochemical energy storage. Specifically, we first introduce various synthesis methods based on NC and the pretreatment process to increase the conductivity. Then we focus on the specific application of NC in electrochemical energy storage devices. Finally, we summarize the previously reported work and put forward views on the further development of NC in the field of electrochemical energy storage.展开更多
Nanocelluloses, obtained from the biopolymer cellulose, are a class of renewable functional nanomaterials with excellent properties and a broad range of applications. This review mainly illustrates practical and advan...Nanocelluloses, obtained from the biopolymer cellulose, are a class of renewable functional nanomaterials with excellent properties and a broad range of applications. This review mainly illustrates practical and advanced applications of nanocellulose-based materials in the following categories.(1) Fire-resistant materials: in the section on these types of materials, the fireprotection property of nanocellulose/clay hybrid composites(clay nanopaper) is illustrated; oriented montmorillonite(MTM) provides barrier properties and low thermal conductivity whereas cellulose nanofibers(CNFs) impart favorable charring.(2) Thermal insulation materials: the best way to obtain materials with good heat insulation performance is to decrease the thermal conductivity of such materials.(3) Template materials: nanocellulose can direct the deposition and patterning of materials to form nanoparticles, nanowires, or nanotubes with improved properties.展开更多
Cellulose is a renewable,biodegradable,ecofriendly and sustainable biomaterial.Global market of nanocellulose is comprehensively very high due to its utility.Extraction of nanocellulose from bacteria and plant results...Cellulose is a renewable,biodegradable,ecofriendly and sustainable biomaterial.Global market of nanocellulose is comprehensively very high due to its utility.Extraction of nanocellulose from bacteria and plant results in different morphology and size of nanocellulose.Biocompatibility,mechanical strength,biofabrication,crystallinity,high surface area per unit mass,hydrophilicity,porosity,transparency and non-toxicity of bacterial cellulose make it more attractive.The extravagant nanoscaled three-dimensional network of cellulosic structures possess extraordinary properties for biomedical application,evidencing its usage in skin therapy,cardiovascular implants,cartilage meniscus implants,tissue engineering,bone tissue and neural implants,wound care products,drug delivery agents,tablet modification,tissue engineered urinary conduits,and synthesis of artificial cornea.Hence due to potential benefits associated with nanocellulose effective and efficient techniques are required for the isolation of nanocellulose that should be economical,ecofriendly and non-toxic.展开更多
Bio-based materials open a new world of possibilities in every field due to its independence from the petrochemical origin. Moreover, concerns on environmental footprints and toxicity of synthetic adhesives made scien...Bio-based materials open a new world of possibilities in every field due to its independence from the petrochemical origin. Moreover, concerns on environmental footprints and toxicity of synthetic adhesives made scientists investigate the utilization of biomaterials for wood adhesives. In this perspective, nanocellulose as a sustainable and cheap bio-nanomaterial provides a better alternative to conventional adhesive based on formaldehyde-containing condensation resins. Property of nanocellulose to act as both binders and as structural reinforcement in various adhesive systems adds to its potential. Besides by reducing the harmful emission of formaldehyde, it also can improve the mechanical properties and enhance performance of adhesives. This review paper aims to point out the potential application of nanocellulose based wood adhesives compared to petroleum-based conventional systems beyond renewability. New functionalities through structural modification in nanocellulose could bring a replacement with the synthetic adhesive systems which will play a significant role in future bio-economy.展开更多
Bacterial nanocellulose(BNC)is a homopolymer ofβ-1,4 linked glycose,which is synthesized by Acetobacter using simple culturing methods to allow inexpensive and environmentally friendly small-and large-scale productio...Bacterial nanocellulose(BNC)is a homopolymer ofβ-1,4 linked glycose,which is synthesized by Acetobacter using simple culturing methods to allow inexpensive and environmentally friendly small-and large-scale production.Depending on the growth media and types of fermentation methods,ultra-pure cellulose can be obtained with different physio-chemical characteristics.Upon biosynthesis,bacterial cellulose is assembled in the medium into a nanostructured network of glucan polymers that are semitransparent,mechanically highly resistant,but soft and elastic,and with a high capacity to store water and exchange gasses.BNC,generally recognized as safe as well as one of the most biocompatible materials,has been found numerous medical applications in wound dressing,drug delivery systems,and implants of heart valves,blood vessels,tympanic membranes,bones,teeth,cartilages,cornea,and urinary tracts.展开更多
Cellulose is a linear polymer consisting of D-anhydroglucose units joined by β-1,4-glycosidic linkages. The densely packed cellulose molecular chain forms crystalline cellulose through strong hydrogen bonding. Owing ...Cellulose is a linear polymer consisting of D-anhydroglucose units joined by β-1,4-glycosidic linkages. The densely packed cellulose molecular chain forms crystalline cellulose through strong hydrogen bonding. Owing to its chemical tunability and excellent mechanical resistance, nanocellulose is widely used in everyday life and the industrial sector. In this work, cellulose materials were nanoprocessed by mechanical ball-milling(1) in polar solvents(N,N-dimethylformamide or dimethyl sulfoxide) with esterification or(2) in hydrophobic agents(polydimethylsiloxane or polytetrafluoroethylene) with different molecular weights. Cellulose nanofibers and nanosheets with different hydrophilic and hydrophobic properties were obtained, and the mechanism of cellulose disintegration along a crystallographic plane induced by mechanical force and the polarity condition were discussed. This work affords a new way to manipulate the morphology and properties of nanocellulose.展开更多
Nanocellulose,a kind of cellulose with nanometer sizes,has drawn great interest in the pulp and paper industry due to its unique structure and excellent performance.It can be divided into five categories:nanocrystalli...Nanocellulose,a kind of cellulose with nanometer sizes,has drawn great interest in the pulp and paper industry due to its unique structure and excellent performance.It can be divided into five categories:nanocrystalline cellulose(NCC),nanofibrillated cellulose(NFC),bacterial cellulose(BC),electrospun cellulose nanofibers(ESC),and precipitation regenerated cellulose nanofibers(PRC).In this paper,we reviewed the industrialization progress of nanocellulose in China.Furthermore,we proposed that efficient and environmentally friendly preparation methods and high value utilization would be the focus of nanocellulose development.展开更多
Nanocellulose is of great interest in various areas nowadays as a natural nanostructured biomaterial.However,in many applications,the high hydrophilicity due to a large number of hydroxyl groups is not desired.The hyd...Nanocellulose is of great interest in various areas nowadays as a natural nanostructured biomaterial.However,in many applications,the high hydrophilicity due to a large number of hydroxyl groups is not desired.The hydrophobic modification of nanocellulose can thus increase its application.This work reviewed recent developments of methods for nanocellulose hydrophobic modification,through physical adsorption and chemical grafting.The applications of hydrophobic nanocellulose were also reviewed.展开更多
In this study,cellulose nanofibrils(CNF)of high charge(H-P-CNF)and screened size(H-P-CNF-S)were fabricated by increasing the charge of phosphorylated cellulose nanofibrils(P-CNFs)during the pre-treatment step of CNF p...In this study,cellulose nanofibrils(CNF)of high charge(H-P-CNF)and screened size(H-P-CNF-S)were fabricated by increasing the charge of phosphorylated cellulose nanofibrils(P-CNFs)during the pre-treatment step of CNF production.Results show that the H-P-CNF have a significantly higher charge(3.41 mmol g^(-1))compared with P-CNF(1.86 mmol g^(-1)).Centrifugation of H-P-CNF gave a supernatant with higher charge(5.4 mmol g^(-1))and a reduced size(H-P-CNF-S).These tailored nanocelluloses were added to polyvinyl alcohol(PVA)solutions and the suspensions were successfully coated on porous polysulfone(PSf)supports to produce thin-film nanocomposite membranes.The humid mixed gas permeation tests show that CO_(2)permeability increases for membranes with the addition of H-P-CNF-S by 52%and 160%,compared with the P-CNF/PVA membrane and neat PVA membrane,respectively.展开更多
The conversion of sugarcane lignocellulosic biomass into fuels,chemicals and high-value materials using the biochemical pathway is considered the most sustainable alternative for the implementation of future biorefine...The conversion of sugarcane lignocellulosic biomass into fuels,chemicals and high-value materials using the biochemical pathway is considered the most sustainable alternative for the implementation of future biorefineries.Actually,the first large-scale cellulosic ethanol plants that have started operating worldwide apply the enzymatic hydrolysis process to convert biomass into simple sugars that are fermented to ethanol by yeasts.However,several technological challenges still need to be addressed in order to obtain commercially competitive products.This review describes current challenges and perspectives regarding the enzymatic hydrolysis step for processing sugarcane lignocellulosic biomass within the biorefinery.Recent developments in terms of process configuration strategies and opportunities for the implementation of a sugarcane biorefinery,in which the production of ethanol is integrated into the production of high-value products such as enzymes and nanocellulose,are discussed in view of the demands of the current bioeconomy.展开更多
Bio-based nanomaterial is more attractive, due to its abundance, eco-friendliness and sustainability, when compared to the non-renewable toxic petrochemicals used in the wood adhesive sector. Recent studies on the for...Bio-based nanomaterial is more attractive, due to its abundance, eco-friendliness and sustainability, when compared to the non-renewable toxic petrochemicals used in the wood adhesive sector. Recent studies on the formaldehyde emission by petrochemical binders in wood adhesives have attracted scientists for the research in biomaterial-based binders. In this aspect nanocellulose (NC) is one such material which has reinforcing ability and has natural binding properties. Conventional wood adhesive uses petrochemical-based binders and additives. Inclusion of nanocellulose in wood adhesive could drastically reduce the dependency on non-renewable petroleum sources. Even though wood adhesive uses NC for improving mechanical properties of the adhesive, usage is restricted because of its inability to enhance tackiness and adhesion compared with petrochemicals. Availability of free hydroxyl groups and feasibility for modification can be a potential way for functionalization of this nanomaterial. To improve adhesion properties and to make nanocellulose act as a functional filler, the crosslinking approach can be a possible solution. Enhancement of thermal properties with improved thermal degradation, water barrier properties of crosslinked films and enhanced mechanical properties especially in crosslinked poly (vinyl alcohol) (PVA) matrix, which is one of the binders for wood adhesive discussed in this review paper proves the potential applicability of crosslinked NC. Hence by inclusion of NC in wood adhesive and crosslinking with the binder, both mechanical and performance properties are expected to enhance which will create a new world and possibilities for the bio-based eco-friendly wood adhesives. In this review paper, we have reviewed the crosslinking of nanocellulose to enhance the performance of wood adhesives.展开更多
Nanocellulose is a new-age material derived from cellulosic biomass and has large specific surface area, high modulus and highly hydrophilic in nature. It comprises of two structural forms viz., nanofibrillated cellul...Nanocellulose is a new-age material derived from cellulosic biomass and has large specific surface area, high modulus and highly hydrophilic in nature. It comprises of two structural forms viz., nanofibrillated cellulose (NFC) and nanocrystalline cellulose (NCC). This review provides a critical overview of the recent methods of bio- and chemo-mechanical processes for production of nanocellulose, their energy requirements and their functional properties. More than a dozen of pilot plants/commercial plants are under operation mostly in the developed countries, trying to exploit the potential of nanocellulose as reinforcing agent in paper, films, concrete, rubber, polymer films and so on. The utilization of nanocellulose is restricted mainly due to initial investment involved, high production cost and lack of toxicological information. This review focuses on the current trend and exploration of energy efficient and environment-friendly mechanical methods using pretreatments (both chemical and biological), their feasibility in scaling up and the future scope for expansion of nanocellulose application in diverse fields without impacting the environment. In addition, a nanocellulose quality index is derived to act as a guide for application based screening of nanocellulose production protocols.展开更多
Alginate blended with cellulose nanocrystals(CNC),cellulose nanofibers(CNF),and tri-carboxylate cellulose nanofibers(TPC-CNF)prepared and encapsulated in the form of microcapsules(bio-polymeric beads).The cellulosic n...Alginate blended with cellulose nanocrystals(CNC),cellulose nanofibers(CNF),and tri-carboxylate cellulose nanofibers(TPC-CNF)prepared and encapsulated in the form of microcapsules(bio-polymeric beads).The cellulosic nanomaterials that used in this study were investigated as nanomaterials for wastewater treatment applications.Batch experiments were performed to study the removal of copper,lead,magnesium,and iron from aqueous solutions by the prepared beads.The effects of the sorbent dosage and the modified polymers on the removing efficiency of the metal cations were examined.Atomic absorption was used to measure the metal ions concentrations.The modified bio-polymeric beads(Alg-CNF,Alg-CNC,and Alg-TPC-CNF)exhibited high-efficiency towards removing of the metal cations;Cu^(2+),Pb^(2+),Mg^(2+),and Fe^(2+).The Alg-TPC-CNF composite was exhibited excellent removing efficiency which around 95%for Pb,92%for Cu,43%for Fe and 54%for Mg.These outcomes affirm that the utilization of nanomaterials giving higher adsorption capacities contrasted with similar material in its micro or macrostructure form.展开更多
基金the Beijing Nova Program(20230484431)Opening Project of State Silica-Based Materials Laboratory of Anhui Province(2022KF12)is gratefully acknowledged.
文摘With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.
文摘Non-traditional lignocellulosic materials are a significant resource for producing high-value products,including nanocellulose.This work studied the nanocellulose obtention from chemical pulps of the two fast-growing bamboo species,Guadua trinii,and Guadua angustifolia.Chemical pulps were produced by soda-anthraquinone(S)pulping from both autohydrolysis-pretreated(H)and unpretreated bamboo chips.Autohydrolysis-pretreated(SHP)and unpretreated soda-anthraquinone(AQ)(SP)pulps were characterized by yield,Kappa number,alpha,beta,and gamma cellulose,degree of polymerization,water retention value,and crystallinity.The nanocellulose was produced by a sequential chemical oxidation treatment(2,2,6,6-tetramethylpiperidine-1-oxyl,TEMPO reagent)and mechanical nanofibrillation.Nanocellulose was characterized by carboxylic group content and viscosity.The results revealed that autohydrolysis pretreatment resulted in a higher hemicelluloses extraction in G.angustifolia.In contrast,the pulping yield of unpretreated samples was higher for G.trinii,and the soda-AQ pulps from this species exhibited better delignification than the autohydrolysis-pretreated pulps.The crystallinity index values of the obtained pulps were high(>80%),and the alpha-cellulose contents were similar.The viscosities of the aqueous nanocellulose suspensions were higher for the nanocellulose solutions obtained from the unpretreated soda-AQ pulps.Besides,nanocellulose from G.trinii unpretreated soda-AQ pulps had a higher rate of carboxylic groups.The results of this work are significant in assessing the potential of both bamboo species as a source of high-value products within the biorefinery framework because the viscosities of the aqueous nanocellulose suspensions depend on the size and shape of nanofibrils.It has significant importance for industrial unit operations and potential applications.
文摘Spraying nanocellulose onto films provides a quick and scalable way to create free-standing films with exceptional consistency and customizable thickness. This method increases the application of nanocellulose films in various industries and satisfies the requirements of large-scale production. In the field of biomedicine, spray-coated free-standing nanocellulose films hold great promise for applications such as drug delivery, tissue engineering, wound healing, device coatings, and biosensing. They are excellent nanomaterials for a variety of biomedical applications due to their special qualities, including biocompatibility, high mechanical strength, porous structure, large surface area, and adaptability. This paper reviewed the detailed exposure of the spray coating process of nanocellulose suspension onto free- standing films and its biomedical applications.
基金financially supported by the National Natural Science Foundation of China(51603050)the Natural Science Foundation of Guangxi Autonomous Region(2016GXNSFBA380064,2016GXNSFAA380029)+1 种基金the Startup Foundation for Doctors of Guilin University of Technologythe Open Project Foundation of the Guangxi Key Laboratory of New Energy and Building Energy Saving(16-J-21-3)
文摘Nanocellulose is a biodegradable, renewable, nonmeltable polymeric material that is insoluble in most solvents due to hydrogen bonding and crystallinity. Nanocellulose has attracted considerable attention in recent decades owing to its environmental friendliness, wide availability, good biocompatibility, high crystallinity, and high Young's modulus. This review presents the recent achievements in preparation and applications of nanocellulose, including a discussion of the advantages and disadvantages of various preparation methods and a summary of the applications of nanocellulose in composite materials research. Finally, we examine the mounting evidence of more widespread potential applications of nanocellulose.
基金supported by the Project of Jinan City(202228044)National Natural Science Foundation of China(32071720,32271814)+1 种基金the China Postdoctoral Science Foundation(2021M702456)China Scholarship Council for supporting their PhD program。
文摘Multifunctional architecture with intriguing structural design is highly desired for realizing the promising performances in wearable sensors and flexible energy storage devices.Cellulose nanofiber(CNF)is employed for assisting in building conductive,hyperelastic,and ultralight Ti_(3)C_(2)T_(x)MXene hybrid aerogels with oriented tracheid-like texture.The biomimetic hybrid aerogels are constructed by a facile bidirectional freezing strategy with CNF,carbon nanotube(CNT),and MXene based on synergistic electrostatic interaction and hydrogen bonding.Entangled CNF and CNT“mortars”bonded with MXene“bricks”of the tracheid structure produce good interfacial binding,and superior mechanical strength(up to 80%compressibility and extraordinary fatigue resistance of 1000 cycles at 50%strain).Benefiting from the biomimetic texture,CNF/CNT/MXene aerogel shows ultralow density of 7.48 mg cm^(-3)and excellent electrical conductivity(~2400 S m^(-1)).Used as pressure sensors,such aerogels exhibit appealing sensitivity performance with the linear sensitivity up to 817.3 kPa^(-1),which affords their application in monitoring body surface information and detecting human motion.Furthermore,the aerogels can also act as electrode materials of compressive solid-state supercapacitors that reveal satisfactory electrochemical performance(849.2 mF cm^(-2)at 0.8 mA cm^(-2))and superior long cycle compression performance(88%after 10,000 cycles at a compressive strain of 30%).
基金the National Key Research and Development Program of China(2017YFB1104300).
文摘Naturally derived nanocellulose with unique physiochemical properties and giant potentials as renewable smart nanomaterials opens up endless novel advanced functional materials for multi-sensing applications.However,integrating inorganic functional two-dimensional carbon materials such as graphene has realized hybrid organic-inorganic nanocomposite materials with precisely tailored properties and multi-sensing abilities.Altogether,the affinity,stability,dispersibility,modification,and functionalization are some of the key merits permitting their synergistic interfacial interactions,which exhibited highly advanced multifunctional hybrid nanocomposites with desirable properties.Moreover,the high performance of such hybrids could be achievable through green and straightforward approaches.In this context,the review covered the most advanced nanocellulose-graphene hybrids,focusing on their synthetization,functionalization,fabrication,and multi-sensing applications.These hybrid films exhibited great potentials as a multifunctional sensing platform for numerous mechanical,environmental,and human bio-signals detections,mimicking,and in-situ monitoring.
文摘This review provides a critical overview of the recent methods and processes developed for the production of cellulose nanoparticles with controlled morphology, structure and properties, and also sums up (1) the processes for the chemical modifications of these particles in order to prevent their re-aggregation during spray-drying procedures and to increase their reactivity, (2) the recent processes involved in the production of nanostructured biomaterials and composites. The structural and physical properties of those nanocelluloses, combined with their biodegradability, make them materials of choice in the very promising area of nanotechnology, likely subject to major commercial successes in the context of green chemistry. With a prospective and pioneering approach to the subject matter, various laboratories involved in this domain have developed bio-products now almost suitable to industrial applications;although some important steps remain to be overcome, those are worth been reviewed and supplemented. At this stage, several pilot units and demonstration plants have been built to improve, optimize and scale-up the processes developed at laboratory scale. Industrial reactors with suitable environment and modern control equipment are to be expected within that context. This review shall bring the suitable processing dimension that may be needed now, given the numerous reviews outlining the product potential attributes. An abundant literature database, close to 250 publications and patents, is provided, consolidating the various research and more practical angles.
基金financial support by the National Natural Science Foundation of China (grant no. 51808303, 51672143 and 31870535)Outstanding Youth of Natural Science in Shandong Province (JQ201713)Taishan Scholars Program and ARC Discovery Project (No. 170103317)。
文摘Recently, in response to the major challenges in energy development and environmental issues, tremendous efforts are being devoted to developing electrochemical energy storage devices based on green sustainable resources. As a class of green materials, nanocellulose(NC) has received extensive attention. In this review, we summarize the research progress of NC derived materials in electrochemical energy storage. Specifically, we first introduce various synthesis methods based on NC and the pretreatment process to increase the conductivity. Then we focus on the specific application of NC in electrochemical energy storage devices. Finally, we summarize the previously reported work and put forward views on the further development of NC in the field of electrochemical energy storage.
文摘Nanocelluloses, obtained from the biopolymer cellulose, are a class of renewable functional nanomaterials with excellent properties and a broad range of applications. This review mainly illustrates practical and advanced applications of nanocellulose-based materials in the following categories.(1) Fire-resistant materials: in the section on these types of materials, the fireprotection property of nanocellulose/clay hybrid composites(clay nanopaper) is illustrated; oriented montmorillonite(MTM) provides barrier properties and low thermal conductivity whereas cellulose nanofibers(CNFs) impart favorable charring.(2) Thermal insulation materials: the best way to obtain materials with good heat insulation performance is to decrease the thermal conductivity of such materials.(3) Template materials: nanocellulose can direct the deposition and patterning of materials to form nanoparticles, nanowires, or nanotubes with improved properties.
文摘Cellulose is a renewable,biodegradable,ecofriendly and sustainable biomaterial.Global market of nanocellulose is comprehensively very high due to its utility.Extraction of nanocellulose from bacteria and plant results in different morphology and size of nanocellulose.Biocompatibility,mechanical strength,biofabrication,crystallinity,high surface area per unit mass,hydrophilicity,porosity,transparency and non-toxicity of bacterial cellulose make it more attractive.The extravagant nanoscaled three-dimensional network of cellulosic structures possess extraordinary properties for biomedical application,evidencing its usage in skin therapy,cardiovascular implants,cartilage meniscus implants,tissue engineering,bone tissue and neural implants,wound care products,drug delivery agents,tablet modification,tissue engineered urinary conduits,and synthesis of artificial cornea.Hence due to potential benefits associated with nanocellulose effective and efficient techniques are required for the isolation of nanocellulose that should be economical,ecofriendly and non-toxic.
文摘Bio-based materials open a new world of possibilities in every field due to its independence from the petrochemical origin. Moreover, concerns on environmental footprints and toxicity of synthetic adhesives made scientists investigate the utilization of biomaterials for wood adhesives. In this perspective, nanocellulose as a sustainable and cheap bio-nanomaterial provides a better alternative to conventional adhesive based on formaldehyde-containing condensation resins. Property of nanocellulose to act as both binders and as structural reinforcement in various adhesive systems adds to its potential. Besides by reducing the harmful emission of formaldehyde, it also can improve the mechanical properties and enhance performance of adhesives. This review paper aims to point out the potential application of nanocellulose based wood adhesives compared to petroleum-based conventional systems beyond renewability. New functionalities through structural modification in nanocellulose could bring a replacement with the synthetic adhesive systems which will play a significant role in future bio-economy.
基金financial assistance from the INNOGAP (Unitec), Sciences Innovation HUB, and Botany and Plant Biology Department of University of Geneva
文摘Bacterial nanocellulose(BNC)is a homopolymer ofβ-1,4 linked glycose,which is synthesized by Acetobacter using simple culturing methods to allow inexpensive and environmentally friendly small-and large-scale production.Depending on the growth media and types of fermentation methods,ultra-pure cellulose can be obtained with different physio-chemical characteristics.Upon biosynthesis,bacterial cellulose is assembled in the medium into a nanostructured network of glucan polymers that are semitransparent,mechanically highly resistant,but soft and elastic,and with a high capacity to store water and exchange gasses.BNC,generally recognized as safe as well as one of the most biocompatible materials,has been found numerous medical applications in wound dressing,drug delivery systems,and implants of heart valves,blood vessels,tympanic membranes,bones,teeth,cartilages,cornea,and urinary tracts.
基金financial support of the National Natural Science Foundation(Nos.51373191,51472253)
文摘Cellulose is a linear polymer consisting of D-anhydroglucose units joined by β-1,4-glycosidic linkages. The densely packed cellulose molecular chain forms crystalline cellulose through strong hydrogen bonding. Owing to its chemical tunability and excellent mechanical resistance, nanocellulose is widely used in everyday life and the industrial sector. In this work, cellulose materials were nanoprocessed by mechanical ball-milling(1) in polar solvents(N,N-dimethylformamide or dimethyl sulfoxide) with esterification or(2) in hydrophobic agents(polydimethylsiloxane or polytetrafluoroethylene) with different molecular weights. Cellulose nanofibers and nanosheets with different hydrophilic and hydrophobic properties were obtained, and the mechanism of cellulose disintegration along a crystallographic plane induced by mechanical force and the polarity condition were discussed. This work affords a new way to manipulate the morphology and properties of nanocellulose.
基金the financial support from the National Natural Science Foundation of China(21875050)
文摘Nanocellulose,a kind of cellulose with nanometer sizes,has drawn great interest in the pulp and paper industry due to its unique structure and excellent performance.It can be divided into five categories:nanocrystalline cellulose(NCC),nanofibrillated cellulose(NFC),bacterial cellulose(BC),electrospun cellulose nanofibers(ESC),and precipitation regenerated cellulose nanofibers(PRC).In this paper,we reviewed the industrialization progress of nanocellulose in China.Furthermore,we proposed that efficient and environmentally friendly preparation methods and high value utilization would be the focus of nanocellulose development.
文摘Nanocellulose is of great interest in various areas nowadays as a natural nanostructured biomaterial.However,in many applications,the high hydrophilicity due to a large number of hydroxyl groups is not desired.The hydrophobic modification of nanocellulose can thus increase its application.This work reviewed recent developments of methods for nanocellulose hydrophobic modification,through physical adsorption and chemical grafting.The applications of hydrophobic nanocellulose were also reviewed.
基金financial support to the work through the Nano 2021 program(NanoMBE project,number 239172)。
文摘In this study,cellulose nanofibrils(CNF)of high charge(H-P-CNF)and screened size(H-P-CNF-S)were fabricated by increasing the charge of phosphorylated cellulose nanofibrils(P-CNFs)during the pre-treatment step of CNF production.Results show that the H-P-CNF have a significantly higher charge(3.41 mmol g^(-1))compared with P-CNF(1.86 mmol g^(-1)).Centrifugation of H-P-CNF gave a supernatant with higher charge(5.4 mmol g^(-1))and a reduced size(H-P-CNF-S).These tailored nanocelluloses were added to polyvinyl alcohol(PVA)solutions and the suspensions were successfully coated on porous polysulfone(PSf)supports to produce thin-film nanocomposite membranes.The humid mixed gas permeation tests show that CO_(2)permeability increases for membranes with the addition of H-P-CNF-S by 52%and 160%,compared with the P-CNF/PVA membrane and neat PVA membrane,respectively.
文摘The conversion of sugarcane lignocellulosic biomass into fuels,chemicals and high-value materials using the biochemical pathway is considered the most sustainable alternative for the implementation of future biorefineries.Actually,the first large-scale cellulosic ethanol plants that have started operating worldwide apply the enzymatic hydrolysis process to convert biomass into simple sugars that are fermented to ethanol by yeasts.However,several technological challenges still need to be addressed in order to obtain commercially competitive products.This review describes current challenges and perspectives regarding the enzymatic hydrolysis step for processing sugarcane lignocellulosic biomass within the biorefinery.Recent developments in terms of process configuration strategies and opportunities for the implementation of a sugarcane biorefinery,in which the production of ethanol is integrated into the production of high-value products such as enzymes and nanocellulose,are discussed in view of the demands of the current bioeconomy.
文摘Bio-based nanomaterial is more attractive, due to its abundance, eco-friendliness and sustainability, when compared to the non-renewable toxic petrochemicals used in the wood adhesive sector. Recent studies on the formaldehyde emission by petrochemical binders in wood adhesives have attracted scientists for the research in biomaterial-based binders. In this aspect nanocellulose (NC) is one such material which has reinforcing ability and has natural binding properties. Conventional wood adhesive uses petrochemical-based binders and additives. Inclusion of nanocellulose in wood adhesive could drastically reduce the dependency on non-renewable petroleum sources. Even though wood adhesive uses NC for improving mechanical properties of the adhesive, usage is restricted because of its inability to enhance tackiness and adhesion compared with petrochemicals. Availability of free hydroxyl groups and feasibility for modification can be a potential way for functionalization of this nanomaterial. To improve adhesion properties and to make nanocellulose act as a functional filler, the crosslinking approach can be a possible solution. Enhancement of thermal properties with improved thermal degradation, water barrier properties of crosslinked films and enhanced mechanical properties especially in crosslinked poly (vinyl alcohol) (PVA) matrix, which is one of the binders for wood adhesive discussed in this review paper proves the potential applicability of crosslinked NC. Hence by inclusion of NC in wood adhesive and crosslinking with the binder, both mechanical and performance properties are expected to enhance which will create a new world and possibilities for the bio-based eco-friendly wood adhesives. In this review paper, we have reviewed the crosslinking of nanocellulose to enhance the performance of wood adhesives.
文摘Nanocellulose is a new-age material derived from cellulosic biomass and has large specific surface area, high modulus and highly hydrophilic in nature. It comprises of two structural forms viz., nanofibrillated cellulose (NFC) and nanocrystalline cellulose (NCC). This review provides a critical overview of the recent methods of bio- and chemo-mechanical processes for production of nanocellulose, their energy requirements and their functional properties. More than a dozen of pilot plants/commercial plants are under operation mostly in the developed countries, trying to exploit the potential of nanocellulose as reinforcing agent in paper, films, concrete, rubber, polymer films and so on. The utilization of nanocellulose is restricted mainly due to initial investment involved, high production cost and lack of toxicological information. This review focuses on the current trend and exploration of energy efficient and environment-friendly mechanical methods using pretreatments (both chemical and biological), their feasibility in scaling up and the future scope for expansion of nanocellulose application in diverse fields without impacting the environment. In addition, a nanocellulose quality index is derived to act as a guide for application based screening of nanocellulose production protocols.
基金The authors acknowledge the Science and Technology Development Fund(STDF),Egypt for financial support of the research activities related to the projectProject ID 15203+1 种基金The authors also gratefully express their sincere gratitude to the“PHC-UTIQUE CMCU”(18G1132)the CMPTM(17TM22),as well as to the Tunisian Ministry of Higher Education for the financial support.
文摘Alginate blended with cellulose nanocrystals(CNC),cellulose nanofibers(CNF),and tri-carboxylate cellulose nanofibers(TPC-CNF)prepared and encapsulated in the form of microcapsules(bio-polymeric beads).The cellulosic nanomaterials that used in this study were investigated as nanomaterials for wastewater treatment applications.Batch experiments were performed to study the removal of copper,lead,magnesium,and iron from aqueous solutions by the prepared beads.The effects of the sorbent dosage and the modified polymers on the removing efficiency of the metal cations were examined.Atomic absorption was used to measure the metal ions concentrations.The modified bio-polymeric beads(Alg-CNF,Alg-CNC,and Alg-TPC-CNF)exhibited high-efficiency towards removing of the metal cations;Cu^(2+),Pb^(2+),Mg^(2+),and Fe^(2+).The Alg-TPC-CNF composite was exhibited excellent removing efficiency which around 95%for Pb,92%for Cu,43%for Fe and 54%for Mg.These outcomes affirm that the utilization of nanomaterials giving higher adsorption capacities contrasted with similar material in its micro or macrostructure form.