Herein,Co/CoO heterojunction nanoparticles(NPs)rich in oxygen vacancies embedded in mesoporous walls of nitrogen-doped hollow carbon nanoboxes coupled with nitrogen-doped carbon nanotubes(P-Co/CoOV@NHCNB@NCNT)are well...Herein,Co/CoO heterojunction nanoparticles(NPs)rich in oxygen vacancies embedded in mesoporous walls of nitrogen-doped hollow carbon nanoboxes coupled with nitrogen-doped carbon nanotubes(P-Co/CoOV@NHCNB@NCNT)are well designed through zeolite-imidazole framework(ZIF-67)carbonization,chemical vapor deposition,and O_(2) plasma treatment.As a result,the threedimensional NHCNBs coupled with NCNTs and unique heterojunction with rich oxygen vacancies reduce the charge transport resistance and accelerate the catalytic reaction rate of the P-Co/CoOV@NHCNB@NCNT,and they display exceedingly good electrocatalytic performance for oxygen reduction reaction(ORR,halfwave potential[EORR,1/2=0.855 V vs.reversible hydrogen electrode])and oxygen evolution reaction(OER,overpotential(η_(OER,10)=377mV@10mA cm^(−2)),which exceeds that of the commercial Pt/C+RuO_(2) and most of the formerly reported electrocatalysts.Impressively,both the aqueous and flexible foldable all-solid-state rechargeable zinc-air batteries(ZABs)assembled with the P-Co/CoOV@NHCNB@NCNT catalyst reveal a large maximum power density and outstanding long-term cycling stability.First-principles density functional theory calculations show that the formation of heterojunctions and oxygen vacancies enhances conductivity,reduces reaction energy barriers,and accelerates reaction kinetics rates.This work opens up a new avenue for the facile construction of highly active,structurally stable,and cost-effective bifunctional catalysts for ZABs.展开更多
Rechargeable Mg batteries(RMBs)have become one of the best subsitutes for lithium-ion batteries due to the high volumetric capacity,abundant resources,and uniform plating behavior of Mg metal anode.However,the safety ...Rechargeable Mg batteries(RMBs)have become one of the best subsitutes for lithium-ion batteries due to the high volumetric capacity,abundant resources,and uniform plating behavior of Mg metal anode.However,the safety hazard induced by the formation of high-modulue Mg dendrites under a high current density(10 mA cm^(-1))was still revealed in recent years.It has forced researchers to re-examine the safety of RMBs.In this review,the intrinsic safety factors of key components in RMBs,such as uneven plating,pitting and flammability of Mg anode,heat release and crystalline water decomposition of cathode,strong corrosion,low oxidition stability and flammability of electrolytes,and soforth,are systematacially summarized.Their origins,formation mechanisms,and possible safety hazards are deeply discussed.To develop high-performance Mg anode,current strategies including designing artificial SEI,three-dimensional substrates,and Mg alloys are summarized.For practical electrolytes,the configurations of boron-centered anions and simple Mg salts and the functionalized solvent with high boiling point and low flammability are suggested to comprehensively design.In addition,the future study should more focus on the investigation on the thermal runaway and decomposition of cathode materials and separa-tors.This review aims to provide fundamental insights into the relationship between electrochemistry and safety,further promoting the sustainable development of RMBs.展开更多
Rechargeable magnesium-metal batteries(RMMBs)are promising next-generation secondary batteries;however,their development is inhibited by the low capacity and short cycle lifespan of cathodes.Although various strategie...Rechargeable magnesium-metal batteries(RMMBs)are promising next-generation secondary batteries;however,their development is inhibited by the low capacity and short cycle lifespan of cathodes.Although various strategies have been devised to enhance the Mg^(2+)migration kinetics and structural stability of cathodes,they fail to improve electronic conductivity,rendering the cathodes incompatible with magnesium-metal anodes.Herein,we propose a dual-defect engineering strategy,namely,the incorporation of Mg^(2+)pre-intercalation defect(P-Mgd)and oxygen defect(Od),to simultaneously improve the Mg^(2+)migration kinetics,structural stability,and electronic conductivity of the cathodes of RMMBs.Using lamellar V_(2)O_(5)·nH_(2)O as a demo cathode material,we prepare a cathode comprising Mg_(0.07)V_(2)O_(5)·1.4H_(2)O nanobelts composited with reduced graphene oxide(MVOH/rGO)with P-Mgd and Od.The Od enlarges interlayer spacing,accelerates Mg^(2+)migration kinetics,and prevents structural collapse,while the P-Mgd stabilizes the lamellar structure and increases electronic conductivity.Consequently,the MVOH/rGO cathode exhibits a high capacity of 197 mAh g^(−1),and the developed Mg foil//MVOH/rGO full cell demonstrates an incredible lifespan of 850 cycles at 0.1 A g^(−1),capable of powering a light-emitting diode.The proposed dual-defect engineering strategy provides new insights into developing high-durability,high-capacity cathodes,advancing the practical application of RMMBs,and other new secondary batteries.展开更多
M-N-C(M=Fe,Co,Ni,etc.) catalyst owns high catalytic activity in the oxygen catalytic reaction which is the most likely to replace the Pt-based catalysts.But it is still a challenge to further increase the active site ...M-N-C(M=Fe,Co,Ni,etc.) catalyst owns high catalytic activity in the oxygen catalytic reaction which is the most likely to replace the Pt-based catalysts.But it is still a challenge to further increase the active site density.This article constructs the high-efficiency FeMn-N/S-C-1000 catalyst to realize ORR/OER bifunctional catalysis by hetero-atom,bimetal(Fe,Mn) doped simultaneously strategy.When evaluated it as bi-functional electro-catalysts,FeMn-N/S-C-1000 exhibits excellent catalytic activity(E_(1/2)=0.924 V,E_(j=10)=1.617 V) in alkaline media,outperforms conventional Pt/C,RuO_(2) and most non-precious-metal catalysts reported recently,Such outstanding performance is owing to N,S co-coordinated with metal to form multi-types of single atom,dual atom active sites to carry out bi-catalysis.Importantly,nitrite poison test provides the proof that the active sites of FeMn-N/S-C are more than that of single-atom catalysts to promote catalytic reactions directly.To better understand the local structure of Fe and Mn active sites,XAS and DFT were employed to reveal that FeMn-N_5/S-C site plays the key role during catalysis.Notably,the FeMn-N/S-C-1000 based low-temperature rechargeable flexible Zn-air also exhibits superior discharge performance and extraordinary durability at-40℃.This work will provide a new idea to design diatomic catalysts applied in low-temperature rechargeable batteries.展开更多
Precision engineering of catalytic sites to guide more favorable pathways for Li_(2)O_(2) nucleation and decom-position represents an enticing kinetic strategy for mitigating overpotential,enhancing discharge capac-it...Precision engineering of catalytic sites to guide more favorable pathways for Li_(2)O_(2) nucleation and decom-position represents an enticing kinetic strategy for mitigating overpotential,enhancing discharge capac-ity,and improving recycling stability of Li-O_(2) batteries.In this work,we employ metal-organic frameworks(MOFs)derivation and ion substitution strategies to construct atomically dispersed Mn-N_(4) moieties on hierarchical porous nitrogen-doped carbon(Mn SAs-NC)with the aim of reducing the over-potential and improving the cycling stability of Li-O_(2) batteries.The porous structure provides more chan-nels for mass transfer and exposes more highly active sites for electrocatalytic reactions,thus promoting the formation and decomposition of Li_(2)O_(2).The Li-O_(2) batteries with Mn SAs-NC cathode achieve lower overpotential,higher specific capacity(14290 mA h g^(-1) at 100 mAg^(-1)),and superior cycle stability(>100 cycles at 200 mA g^(-1))compared with the Mn NPs-NC and NC.Density functional theory(DFT)cal-culations reveal that the construction of Mn-N_(4) moiety tunes the charge distribution of the pyridinic N-rich vacancy and balances the affinity of the intermediates(LiO_(2) and Li_(2)O_(2)).The initial nucleation of Li_(2)O_(2) on Mn SAs-NC favors the O_(2)-→LiO_(2)→Li_(2)O_(2) surface-adsorption pathway,which mitigates the overpoten-tials of the oxygen reduction(ORR)and oxygen evolution reaction(OER).As a result,Mn SAs-NC with Mn-N_(4) moiety effectively facilitates the Li_(2)O_(2) nucleation and enables its reversible decomposition.This work establishes a methodology for constructing carbon-based electrocatalysts with high activity and selectivity for Li-O_(2)batteries.展开更多
Rechargeable magnesium batteries(RMBs),as a low-cost,high-safety and high-energy storage technology,have attracted tremendous attention in large-scale energy storage applications.However,the key anode/electrolyte inte...Rechargeable magnesium batteries(RMBs),as a low-cost,high-safety and high-energy storage technology,have attracted tremendous attention in large-scale energy storage applications.However,the key anode/electrolyte interfacial issues,including surface passivation,uneven Mg plating/stripping,and pulverization after cycling still result in a large overpotential,short cycling life,poor power density,and possible safety hazards of cells,severely impeding the commercial development of RMBs.In this review,a concise overview of recently advanced strategies to address these anode/electroyte interfacial issues is systematically classified and summarized.The design of magnesiophilic substrates,construction of artificial SEI layers,and modification of electrolyte are important and effective strategies to improve the uniformity/kinetics of Mg plating/stripping and achieve the stable anode/electrolyte interface.The key opportunities and challenges in this field are advisedly put forward,and the insights into future directions for stabilizing Mg metal anodes and the anode/electrolyte interface are highlighted.This review provides important references fordeveloping the high-performance and high-safety RMBs.展开更多
The present and future energy requirements of mankind can be fulfilled with sustained research and development efforts by global scientists.The purpose of this review paper is to provide an overview of the fundamental...The present and future energy requirements of mankind can be fulfilled with sustained research and development efforts by global scientists.The purpose of this review paper is to provide an overview of the fundamentals,recent advancements on Lithium and non-Lithium electrochemical rechargeable battery systems,and their future prospects.The initial part of this review paper is dedicated to the advancement and challenges faced by the conventional rechargeable batteries,such as lead-acid,Ni-Cd and Ni-MH batteries.The subsequent section of this review focuses on an in-depth analysis of two major categories of rechargeable batteries,namely lithium-based rechargeable battery systems and alternative non-Lithium rechargeable battery systems.The working principle,construction,and a few important research progress on Li-ion,Li-O_(2),Li-CO_(2) and Li-S batteries have been highlighted.The recent progress and challenges of the alternate batteries such as Na-ion,Na-S,Mg-ion,K-ion,Al-ion,Al-air,Zn-ion and Zn-air are also discussed in this review.The large gap between theoretical and practical electrochemical values for the alternate battery system must be filled by adopting a series of design architectures followed by modern instrumentation for developing next-generation batteries in a sustainable and efficient way.展开更多
Three-dimensional(3D)printing,an additive manufacturing technique,is widely employed for the fabrication of various electrochemical energy storage devices(EESDs),such as batteries and supercapacitors,ranging from nano...Three-dimensional(3D)printing,an additive manufacturing technique,is widely employed for the fabrication of various electrochemical energy storage devices(EESDs),such as batteries and supercapacitors,ranging from nanoscale to macroscale.This technique offers excellent manufacturing flexibility,geometric designability,cost-effectiveness,and eco-friendliness.Recent studies have focused on the utilization of 3D-printed critical materials for EESDs,which have demonstrated remarkable electrochemical performances,including high energy densities and rate capabilities,attributed to improved ion/electron transport abilities and fast kinetics.However,there is a lack of comprehensive reviews summarizing and discussing the recent advancements in the structural design and application of 3D-printed critical materials for EESDs,particularly rechargeable batteries.In this review,we primarily concentrate on the current progress in 3D printing(3DP)critical materials for emerging batteries.We commence by outlining the key characteristics of major 3DP methods employed for fabricating EESDs,encompassing design principles,materials selection,and optimization strategies.Subsequently,we summarize the recent advancements in 3D-printed critical materials(anode,cathode,electrolyte,separator,and current collector)for secondary batteries,including conventional Li-ion(LIBs),Na-ion(SIBs),K-ion(KIBs)batteries,as well as Li/Na/K/Zn metal batteries,Zn-air batteries,and Ni–Fe batteries.Within these sections,we discuss the 3DP precursor,design principles of 3D structures,and working mechanisms of the electrodes.Finally,we address the major challenges and potential applications in the development of 3D-printed critical materials for rechargeable batteries.展开更多
Efficient bifunctional catalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are vital for rechargeable Zn-air batteries(ZABs).Herein,an oxygen-respirable sponge-like Co@C–O–Cs catalyst with ...Efficient bifunctional catalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are vital for rechargeable Zn-air batteries(ZABs).Herein,an oxygen-respirable sponge-like Co@C–O–Cs catalyst with oxygen-rich active sites was designed and constructed for both ORR and OER by a facile carbon dot-assisted strategy.The aerophilic triphase interface of Co@C–O–Cs cathode efficiently boosts oxygen diffusion and transfer.The theoretical calculations and experimental studies revealed that the Co–C–COC active sites can redistribute the local charge density and lower the reaction energy barrier.The Co@C–O–Cs catalyst displays superior bifunctional catalytic activities with a half-wave potential of 0.82 V for ORR and an ultralow overpotential of 294 mV at 10 mA cm^(−2) for OER.Moreover,it can drive the liquid ZABs with high peak power density(106.4 mW cm^(−2)),specific capacity(720.7 mAh g^(−1)),outstanding long-term cycle stability(over 750 cycles at 10 mA cm^(−2)),and exhibits excellent feasibility in flexible all-solid-state ZABs.These findings provide new insights into the rational design of efficient bifunctional oxygen catalysts in rechargeable metal-air batteries.展开更多
The next-generation energy storage systems such as fuel cells,metal-air batteries,and alkali metal(Li,Na)-chalcogen(S,Se)batteries have received increasing attention owing to their high energy density and low cost.How...The next-generation energy storage systems such as fuel cells,metal-air batteries,and alkali metal(Li,Na)-chalcogen(S,Se)batteries have received increasing attention owing to their high energy density and low cost.However,one of the main obstacles of these systems is the poor reaction kinetics in the involved chemical reactions.Therefore,it is essential to incorporate suitable and efficient catalysts into the cell.These years,single-atom catalysts(SACs)are emerging as a frontier in catalysis due to their maximum atom efficiency and unique reaction selectivity.For SACs fabrication,metal-organic frameworks(MOFs)have been confirmed as promising templates or precursors due to their high metal loadings,structural adjustability,porosity,and tailorable catalytic site.In this review,we summarize effective strategies for fabricating SACs by MOFs with corresponding advanced characterization techniques and illustrate the key role of MOFs-based SACs in these batteries by explaining their reaction mechanisms and challenges.Finally,current applications,prospects,and opportunities for MOFs-based SACs in energy storage systems are discussed.展开更多
Zinc–bromine rechargeable batteries(ZBRBs)are one of the most powerful candidates for next-generation energy storage due to their potentially lower material cost,deep discharge capability,non-flammable electrolytes,r...Zinc–bromine rechargeable batteries(ZBRBs)are one of the most powerful candidates for next-generation energy storage due to their potentially lower material cost,deep discharge capability,non-flammable electrolytes,relatively long lifetime and good reversibility.However,many opportunities remain to improve the efficiency and stability of these batteries for long-life operation.Here,we discuss the device configurations,working mechanisms and performance evaluation of ZBRBs.Both non-flow(static)and flow-type cells are highlighted in detail in this review.The fundamental electrochemical aspects,including the key challenges and promising solutions,are discussed,with particular attention paid to zinc and bromine half-cells,as their performance plays a critical role in determining the electrochemical performance of the battery system.The following sections examine the key performance metrics of ZBRBs and assessment methods using various ex situ and in situ/operando techniques.The review concludes with insights into future developments and prospects for high-performance ZBRBs.展开更多
Rechargeable aprotic Li-O_(2)batteries have attractea increasing attention due to their extremely high capacity,and it is very important to design appropriate strategies to synthesize efficient catalysts used as oxyge...Rechargeable aprotic Li-O_(2)batteries have attractea increasing attention due to their extremely high capacity,and it is very important to design appropriate strategies to synthesize efficient catalysts used as oxygen cathode.In present work,we present an expedient "instantaneous nucleation and epitaxial growth"(INEG) synthesis strategy for convenient and large-scale synthesis of ultrafine MOCPs nanoparticles(size 50-100 nm) with obvious advantages such as fast synthesis,high yields,low costs and reduced synthetic steps.The bimetallic Ru/Co-MOCPs are further pyrolyzed to obtain bimetallic Coand low content of Ru-based nanoparticles embedded within nitrogen-doped carbon(Ru/Co@N-C) as an efficient catalyst used in Li-O_(2)battery.The Ru/Co@N-C provides porous carbon framework for the ion transportation and O_(2)diffusion,and has large amounts of metal/nonmetal sites as active site to promote the oxygen reduction reaction(ORR)/oxygen evolution reaction(OER) in Li-O_(2)batteries.As a consequence,a high discharge specific capacity of 15246 mA h g^(-1)at 250 mA g^(-1), excellent rate capability at different current densities,and stable overpotential during cycling,are achieved.This work opened up a new understanding for the industrialized synthesis of ultrafine catalysts for Li-O_(2)batteries with excellent structural characteristics and electrochemical performance.展开更多
Cu-based cathodes in aqueous batteries become very attractive in view of high theoretical capacity,moderate operation voltage and rich reserves of raw materials.However,their applications are obstructed by serious sid...Cu-based cathodes in aqueous batteries become very attractive in view of high theoretical capacity,moderate operation voltage and rich reserves of raw materials.However,their applications are obstructed by serious side reactions.The side reaction mainly arises from the spontaneous formation of Cu_(2)O,which occupies the electrode surface and lowers the reaction reversibility.Here,Na_(2)EDTA is introduced to address these issues.Both experimental results and theoretical calculations indicate that the Na_(2)EDTA reshapes the solvation structure of Cu^(2+)and modifies the electrode/electrolyte interface.Therefore,the redox potential of Cu^(2+)/Cu_(2)O is reduced and the surface of Cu is protected from H2O,thereby inhibiting the formation of Cu_(2)O.Meanwhile,the change in the solvation structure reduces the electrostatic repulsion between Cu^(2+)and the cathode,leading to high local concentration and benefiting uniform deposition.The results shed light on the applications of rechargeable Cu-based batteries.展开更多
Rational design and exploration of low-cost and robust bifunctional oxygen electrocatalysts are vitally important for developing high-performance zinc-air batteries(ZABs).Herein,we reported a facile yet cost-efficient...Rational design and exploration of low-cost and robust bifunctional oxygen electrocatalysts are vitally important for developing high-performance zinc-air batteries(ZABs).Herein,we reported a facile yet cost-efficient approach to construct a bifunctional oxygen reduction reaction(ORR)/oxygen evolution reaction(OER)electrocatalyst composed of N-doped porous carbon nanosheet flowers decorated with Fe Co nanoparticles(Fe Co/N-CF).Rational design of this catalyst is achieved by designing Schiff-base polymer with unique molecular structure via hydrogen bonding of cyanuramide and terephthalaldehyde polycondensate in the presence of metal cations.It exhibits excellent activity and stability for electrocatalysis of ORR/OER,enabling ZAB with a high peak power density of 172 m W cm^(-2)and a large specific capacity of 811 m A h g^(-1)Znat large current.The rechargeable ZAB demonstrates excellent durability for 1000 h with slight voltage decay,far outperforming a couple of precious Pt/Ir-based catalysts.Density functional theory(DFT)calculations reveal that high activity of bimetallic Fe Co stems from enhanced O_(2)and OH-adsorption and accelerated O_(2)dissociation by OAO bond activation.展开更多
Rechargeable magnesium batteries(RMBs)are considered the promising candidates for post lithium-ion batteries due to the abundant storage,high capacity,and dendrite-rare characteristic of Mg anode.However,the lack of p...Rechargeable magnesium batteries(RMBs)are considered the promising candidates for post lithium-ion batteries due to the abundant storage,high capacity,and dendrite-rare characteristic of Mg anode.However,the lack of practical electrolytes impedes the development and application of RMBs.Here,through a one-step reaction of LiCl congenital-containing Knochel–Hauser base TMPL(2,2,6,6-tetrame thylpiperidinylmagnesium chloride lithium chloride complex)with Lewis acid AlCl_(3),we successfully synthesized an efficient amino-magnesium halide TMPLA electrolyte.Raman and mass spectroscopy identified that the electrolyte comprises the typical di-nuclear copolymer[Mg_(2)Cl_(3)·6THF]+cation group and[(TMP)2AlCl_(2)]-anion group,further supported by the results of density functional theory calculations(DFT)and the Molecular dynamics(MD)simulations.The TMPLA electrolyte exhibits promising electrochemical performance,including available anodic stability(>2.65 V vs.SS),high ionic conductivity(6.05mS cm^(-1)),and low overpotential(<0.1 V)as well as appropriate Coulombic efficiency(97.3%)for Mg plating/stripping.Both the insertion Mo6S8cathode and conversion Cu S cathode delivered a desirable electrochemical performance with high capacity and good cycling stability based on the TMPLA electrolyte.In particular,when compatible with low cost and easily synthesized Cu S,the Cu S||Mg cell displayed an extremely high discharge capacity of 458.8 mAh g^(-1)for the first cycle and stabilized at 170.2 mAh g^(-1)with high Coulombic efficiency(99.1%)after 50 cycles at 0.05 C.Our work proposes an efficient electrolyte with impressive compatibility with Mg anode and insertion/conversion cathode for practical RMBs and provides a more profound knowledge of the Lewis acid–base reaction mechanisms.展开更多
Rechargeable aluminum batteries(RABs)are attractive cadidates for next-generation energy storage and conversion,due to the low cost and high safety of Al resources,and high capacity of metal Al based on the three-elec...Rechargeable aluminum batteries(RABs)are attractive cadidates for next-generation energy storage and conversion,due to the low cost and high safety of Al resources,and high capacity of metal Al based on the three-electrons reaction mechanism.However,the development of RABs is greatly limited,because of the lack of advanced cathode materials,and their complicated and unclear reaction mechanisms.Exploring the novel nanostructured transition metal and carbon composites is an effective route for obtaining ideal cathode materials.In this work,we synthesize porous CoSnO_(3)/C nanocubes with oxygen vacancies for utilizing as cathodes in RABs for the first time.The intrinsic structure stability of the mixed metal cations and carbon coating can improve the cycling performance of cathodes by regulating the internal strains of the electrodes during volume expansion.The nanocubes with porous structures contribute to fast mass transportation which improves the rate capability.In addition to this,abundant oxygen vacancies promote the adsorption affinity of cathodes,which improves storage capacity.As a result,the CoSnO_(3)/C cathodes display an excellent reversible capacity of 292.1 mAh g^(-1) at 0.1 A g^(-1),a good rate performance with 109 mAh g^(-1) that is maintained even at 1 A g^(-1) and the provided stable cycling behavior for 500 cycles.Besides,a mechanism of intercalation of Al^(3+)within CoSnO_(3)/C cathode is proposed for the electrochemical process.Overall,this work provides a step toward the development of advanced cathode materials for RABs by engineering novel nanostructured mixed transition-metal oxides with carbon composite and proposes novel insights into chemistry for RABs.展开更多
Nanostructured MnO2/CNT composite was synthesized by a soft template approach in the presence of Pluronic P123 surfactant. The product was characterized by X-ray diffraction, thermogravimetric and differential thermal...Nanostructured MnO2/CNT composite was synthesized by a soft template approach in the presence of Pluronic P123 surfactant. The product was characterized by X-ray diffraction, thermogravimetric and differential thermal analyses, Fourier transformed infrared spectroscopy and high-resolution transmission electron microscopy. The results show that the sample consists of poor crystalline α-MnO2 nanorods with a diameter of about 10 nm and a length of 30-50 nm, which absorb on the carbon nanotubes. The electrochemical properties of the product as cathode material for Li-MnO2 cell are evaluated by galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). Compared with pure MnO2 electrode, the MnO2/CNT composite delivers a much larger initial capacity of 275.3 mA-h/g and better rate and cycling performance.展开更多
An in situ coupling strategy to prepare Co_9S_8/S and N dual?doped graphene composite(Co_9S_8/NSG) has been proposed. The key point of this strategy is the function?oriented design of organic compounds. Herein, cobalt...An in situ coupling strategy to prepare Co_9S_8/S and N dual?doped graphene composite(Co_9S_8/NSG) has been proposed. The key point of this strategy is the function?oriented design of organic compounds. Herein, cobalt porphyrin derivatives with sulfo groups are employed as not only the coupling agents to form and anchor Co_9S_8 on the graphene in situ, but also the heteroatom?doped agent to generate S and N dual?doped graphene. The tight coupling of multiple active sites endows the composite materials with fast electrochemical kinetics and excellent stability for both oxygen reduction reaction(ORR) and oxygen evolution reaction(OER). The obtained electrocatalyst exhibits better activity parameter(ΔE = 0.82 V) and smaller Tafel slope(47.7 mV dec^(-1) for ORR and 69.2 mV dec^(-1) for OER) than commercially available Pt/C and RuO_2. Most importantly, as electrocatalyst for rechargeable Zn–air battery, Co_9S_8/NSG displays low charge–discharge voltage gap and outstanding long?term cycle stability over 138 h compared to Pt/C–RuO_2. To further broaden its application scope, a homemade all?solid?state Zn–air battery is also prepared, which displays good charge–discharge performance and cycle performance. The function?oriented design of N_4?metallomacrocycle derivatives might open new avenues to strategic construction of high?performance and long?life multifunctional electrocatalysts for wider electro?chemical energy applications.展开更多
Over the past decades, a series of aqueous rechargeable batteries(ARBs) were explored, investigated and demonstrated. Among them,aqueous rechargeable alkali-metal ion(Li^+Na^+, K^+) batteries, aqueous rechargeable-met...Over the past decades, a series of aqueous rechargeable batteries(ARBs) were explored, investigated and demonstrated. Among them,aqueous rechargeable alkali-metal ion(Li^+Na^+, K^+) batteries, aqueous rechargeable-metal ion(Zn^(2+),Mg^(2+), Ca^(2+), Al^(3+)) batteries and aqueous rechargeable hybrid batteries are standing out due to peculiar properties. In this review, we focus on the fundamental basics of these batteries, and discuss the scientific and/or technological achievements and challenges. By critically reviewing state-of-the-art technologies and the most promising results so far, we aim to analyze the benefits of ARBs and the critical issues to be addressed, and to promote better development of ARBs.展开更多
The overall electrochemical performances of Ni-Zn batteries are still far from satisfactory, specifically for rate performance and cycling stability Herein, we demonstrated a high-performance flexible Ni//Zn battery w...The overall electrochemical performances of Ni-Zn batteries are still far from satisfactory, specifically for rate performance and cycling stability Herein, we demonstrated a high-performance flexible Ni//Zn battery with outstanding durability and high power density based on selfsupported NiCo_2 O_4 nanosheets as cathode and Zn nanosheets as anode. This Ni//Zn battery is able to deliver a remarkable capacity of183.1 mAh g^(-1) and a good cycling performance(82.7% capacity retention after 3500 cycles). More importantly, this battery achieves an admirable power density of 49.0 kW kg^(-1) and energy density of 303.8 Wh kg^(-1), substantially higher than most recently reported batteries. With such excellent electrochemical performance, this battery will have great potential as an ultrafast power source in practical application.展开更多
基金the support from the Zhejiang Provincial Natural Science Foundation (No.LR22E070001),the National Natural Science Foundation of China (Nos.12275239 and 11975205)the Guangdong Basic and Applied Basic Research Foundation (No.2020B1515120048).
文摘Herein,Co/CoO heterojunction nanoparticles(NPs)rich in oxygen vacancies embedded in mesoporous walls of nitrogen-doped hollow carbon nanoboxes coupled with nitrogen-doped carbon nanotubes(P-Co/CoOV@NHCNB@NCNT)are well designed through zeolite-imidazole framework(ZIF-67)carbonization,chemical vapor deposition,and O_(2) plasma treatment.As a result,the threedimensional NHCNBs coupled with NCNTs and unique heterojunction with rich oxygen vacancies reduce the charge transport resistance and accelerate the catalytic reaction rate of the P-Co/CoOV@NHCNB@NCNT,and they display exceedingly good electrocatalytic performance for oxygen reduction reaction(ORR,halfwave potential[EORR,1/2=0.855 V vs.reversible hydrogen electrode])and oxygen evolution reaction(OER,overpotential(η_(OER,10)=377mV@10mA cm^(−2)),which exceeds that of the commercial Pt/C+RuO_(2) and most of the formerly reported electrocatalysts.Impressively,both the aqueous and flexible foldable all-solid-state rechargeable zinc-air batteries(ZABs)assembled with the P-Co/CoOV@NHCNB@NCNT catalyst reveal a large maximum power density and outstanding long-term cycling stability.First-principles density functional theory calculations show that the formation of heterojunctions and oxygen vacancies enhances conductivity,reduces reaction energy barriers,and accelerates reaction kinetics rates.This work opens up a new avenue for the facile construction of highly active,structurally stable,and cost-effective bifunctional catalysts for ZABs.
基金supported by the National Key R&D Program of China(No.2023YFB3809500)the National Natural Science Foundation of China(No.U23A20555,52202211)+1 种基金the Ninth Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)the Chongqing Technology Innovation and Application Development Project(No.CSTB2022TIAD-KPX0028).
文摘Rechargeable Mg batteries(RMBs)have become one of the best subsitutes for lithium-ion batteries due to the high volumetric capacity,abundant resources,and uniform plating behavior of Mg metal anode.However,the safety hazard induced by the formation of high-modulue Mg dendrites under a high current density(10 mA cm^(-1))was still revealed in recent years.It has forced researchers to re-examine the safety of RMBs.In this review,the intrinsic safety factors of key components in RMBs,such as uneven plating,pitting and flammability of Mg anode,heat release and crystalline water decomposition of cathode,strong corrosion,low oxidition stability and flammability of electrolytes,and soforth,are systematacially summarized.Their origins,formation mechanisms,and possible safety hazards are deeply discussed.To develop high-performance Mg anode,current strategies including designing artificial SEI,three-dimensional substrates,and Mg alloys are summarized.For practical electrolytes,the configurations of boron-centered anions and simple Mg salts and the functionalized solvent with high boiling point and low flammability are suggested to comprehensively design.In addition,the future study should more focus on the investigation on the thermal runaway and decomposition of cathode materials and separa-tors.This review aims to provide fundamental insights into the relationship between electrochemistry and safety,further promoting the sustainable development of RMBs.
基金supported by the National Natural Science Foundation of China(52222407).
文摘Rechargeable magnesium-metal batteries(RMMBs)are promising next-generation secondary batteries;however,their development is inhibited by the low capacity and short cycle lifespan of cathodes.Although various strategies have been devised to enhance the Mg^(2+)migration kinetics and structural stability of cathodes,they fail to improve electronic conductivity,rendering the cathodes incompatible with magnesium-metal anodes.Herein,we propose a dual-defect engineering strategy,namely,the incorporation of Mg^(2+)pre-intercalation defect(P-Mgd)and oxygen defect(Od),to simultaneously improve the Mg^(2+)migration kinetics,structural stability,and electronic conductivity of the cathodes of RMMBs.Using lamellar V_(2)O_(5)·nH_(2)O as a demo cathode material,we prepare a cathode comprising Mg_(0.07)V_(2)O_(5)·1.4H_(2)O nanobelts composited with reduced graphene oxide(MVOH/rGO)with P-Mgd and Od.The Od enlarges interlayer spacing,accelerates Mg^(2+)migration kinetics,and prevents structural collapse,while the P-Mgd stabilizes the lamellar structure and increases electronic conductivity.Consequently,the MVOH/rGO cathode exhibits a high capacity of 197 mAh g^(−1),and the developed Mg foil//MVOH/rGO full cell demonstrates an incredible lifespan of 850 cycles at 0.1 A g^(−1),capable of powering a light-emitting diode.The proposed dual-defect engineering strategy provides new insights into developing high-durability,high-capacity cathodes,advancing the practical application of RMMBs,and other new secondary batteries.
基金supported by the National Natural Science Foundation of China(21603171)the Basic Research Foundation of Xi’an Jiaotong University(xjh012020027)。
文摘M-N-C(M=Fe,Co,Ni,etc.) catalyst owns high catalytic activity in the oxygen catalytic reaction which is the most likely to replace the Pt-based catalysts.But it is still a challenge to further increase the active site density.This article constructs the high-efficiency FeMn-N/S-C-1000 catalyst to realize ORR/OER bifunctional catalysis by hetero-atom,bimetal(Fe,Mn) doped simultaneously strategy.When evaluated it as bi-functional electro-catalysts,FeMn-N/S-C-1000 exhibits excellent catalytic activity(E_(1/2)=0.924 V,E_(j=10)=1.617 V) in alkaline media,outperforms conventional Pt/C,RuO_(2) and most non-precious-metal catalysts reported recently,Such outstanding performance is owing to N,S co-coordinated with metal to form multi-types of single atom,dual atom active sites to carry out bi-catalysis.Importantly,nitrite poison test provides the proof that the active sites of FeMn-N/S-C are more than that of single-atom catalysts to promote catalytic reactions directly.To better understand the local structure of Fe and Mn active sites,XAS and DFT were employed to reveal that FeMn-N_5/S-C site plays the key role during catalysis.Notably,the FeMn-N/S-C-1000 based low-temperature rechargeable flexible Zn-air also exhibits superior discharge performance and extraordinary durability at-40℃.This work will provide a new idea to design diatomic catalysts applied in low-temperature rechargeable batteries.
基金supported by the National Natural Science Foundation of China (21878340)supported in part by the High-Performance Computing Center of Central South University
文摘Precision engineering of catalytic sites to guide more favorable pathways for Li_(2)O_(2) nucleation and decom-position represents an enticing kinetic strategy for mitigating overpotential,enhancing discharge capac-ity,and improving recycling stability of Li-O_(2) batteries.In this work,we employ metal-organic frameworks(MOFs)derivation and ion substitution strategies to construct atomically dispersed Mn-N_(4) moieties on hierarchical porous nitrogen-doped carbon(Mn SAs-NC)with the aim of reducing the over-potential and improving the cycling stability of Li-O_(2) batteries.The porous structure provides more chan-nels for mass transfer and exposes more highly active sites for electrocatalytic reactions,thus promoting the formation and decomposition of Li_(2)O_(2).The Li-O_(2) batteries with Mn SAs-NC cathode achieve lower overpotential,higher specific capacity(14290 mA h g^(-1) at 100 mAg^(-1)),and superior cycle stability(>100 cycles at 200 mA g^(-1))compared with the Mn NPs-NC and NC.Density functional theory(DFT)cal-culations reveal that the construction of Mn-N_(4) moiety tunes the charge distribution of the pyridinic N-rich vacancy and balances the affinity of the intermediates(LiO_(2) and Li_(2)O_(2)).The initial nucleation of Li_(2)O_(2) on Mn SAs-NC favors the O_(2)-→LiO_(2)→Li_(2)O_(2) surface-adsorption pathway,which mitigates the overpoten-tials of the oxygen reduction(ORR)and oxygen evolution reaction(OER).As a result,Mn SAs-NC with Mn-N_(4) moiety effectively facilitates the Li_(2)O_(2) nucleation and enables its reversible decomposition.This work establishes a methodology for constructing carbon-based electrocatalysts with high activity and selectivity for Li-O_(2)batteries.
基金supported by the National Key R&D Program of China(No.2023YFB3809500)the National Natural Science Foundation of China(No.U23A20555,52202211)+3 种基金the Ninth Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)the Chongqing Technology Innovation and Application Development Project(No.CSTB2022TIAD-KPX0028)the Fundamental Research Funds for the Central Universities(2023CDJXY-018)the Venture&Innovation Support Program for Chongqing Overseas Returnees(cx2022119,cx2023087).
文摘Rechargeable magnesium batteries(RMBs),as a low-cost,high-safety and high-energy storage technology,have attracted tremendous attention in large-scale energy storage applications.However,the key anode/electrolyte interfacial issues,including surface passivation,uneven Mg plating/stripping,and pulverization after cycling still result in a large overpotential,short cycling life,poor power density,and possible safety hazards of cells,severely impeding the commercial development of RMBs.In this review,a concise overview of recently advanced strategies to address these anode/electroyte interfacial issues is systematically classified and summarized.The design of magnesiophilic substrates,construction of artificial SEI layers,and modification of electrolyte are important and effective strategies to improve the uniformity/kinetics of Mg plating/stripping and achieve the stable anode/electrolyte interface.The key opportunities and challenges in this field are advisedly put forward,and the insights into future directions for stabilizing Mg metal anodes and the anode/electrolyte interface are highlighted.This review provides important references fordeveloping the high-performance and high-safety RMBs.
基金the Education Department of the Government of Gujarat for providing fellowships under SHODH (Sc Heme of Developing High-Quality Researchresearch,Ref No:2021013725)for researchthe financial support received from Science and Engineering Research Board,Department of Science and Technology,Government of India (CRG/2022/008719)。
文摘The present and future energy requirements of mankind can be fulfilled with sustained research and development efforts by global scientists.The purpose of this review paper is to provide an overview of the fundamentals,recent advancements on Lithium and non-Lithium electrochemical rechargeable battery systems,and their future prospects.The initial part of this review paper is dedicated to the advancement and challenges faced by the conventional rechargeable batteries,such as lead-acid,Ni-Cd and Ni-MH batteries.The subsequent section of this review focuses on an in-depth analysis of two major categories of rechargeable batteries,namely lithium-based rechargeable battery systems and alternative non-Lithium rechargeable battery systems.The working principle,construction,and a few important research progress on Li-ion,Li-O_(2),Li-CO_(2) and Li-S batteries have been highlighted.The recent progress and challenges of the alternate batteries such as Na-ion,Na-S,Mg-ion,K-ion,Al-ion,Al-air,Zn-ion and Zn-air are also discussed in this review.The large gap between theoretical and practical electrochemical values for the alternate battery system must be filled by adopting a series of design architectures followed by modern instrumentation for developing next-generation batteries in a sustainable and efficient way.
基金supported by Stable Support Plan Program for Higher Education Institutions(20220815094504001)Shenzhen Key Laboratory of Advanced Energy Storage(No.ZDSYS20220401141000001).
文摘Three-dimensional(3D)printing,an additive manufacturing technique,is widely employed for the fabrication of various electrochemical energy storage devices(EESDs),such as batteries and supercapacitors,ranging from nanoscale to macroscale.This technique offers excellent manufacturing flexibility,geometric designability,cost-effectiveness,and eco-friendliness.Recent studies have focused on the utilization of 3D-printed critical materials for EESDs,which have demonstrated remarkable electrochemical performances,including high energy densities and rate capabilities,attributed to improved ion/electron transport abilities and fast kinetics.However,there is a lack of comprehensive reviews summarizing and discussing the recent advancements in the structural design and application of 3D-printed critical materials for EESDs,particularly rechargeable batteries.In this review,we primarily concentrate on the current progress in 3D printing(3DP)critical materials for emerging batteries.We commence by outlining the key characteristics of major 3DP methods employed for fabricating EESDs,encompassing design principles,materials selection,and optimization strategies.Subsequently,we summarize the recent advancements in 3D-printed critical materials(anode,cathode,electrolyte,separator,and current collector)for secondary batteries,including conventional Li-ion(LIBs),Na-ion(SIBs),K-ion(KIBs)batteries,as well as Li/Na/K/Zn metal batteries,Zn-air batteries,and Ni–Fe batteries.Within these sections,we discuss the 3DP precursor,design principles of 3D structures,and working mechanisms of the electrodes.Finally,we address the major challenges and potential applications in the development of 3D-printed critical materials for rechargeable batteries.
基金supported by the National Key Research and Development Program of China(No.2019YFC1907801)National Natural Science Foundation of China(No.52174286)+1 种基金the Science and Technology Innovation Program of Hunan Province(2021RC3014)Innovation-Driven Project of Central South University(No.2020CX007)。
文摘Efficient bifunctional catalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are vital for rechargeable Zn-air batteries(ZABs).Herein,an oxygen-respirable sponge-like Co@C–O–Cs catalyst with oxygen-rich active sites was designed and constructed for both ORR and OER by a facile carbon dot-assisted strategy.The aerophilic triphase interface of Co@C–O–Cs cathode efficiently boosts oxygen diffusion and transfer.The theoretical calculations and experimental studies revealed that the Co–C–COC active sites can redistribute the local charge density and lower the reaction energy barrier.The Co@C–O–Cs catalyst displays superior bifunctional catalytic activities with a half-wave potential of 0.82 V for ORR and an ultralow overpotential of 294 mV at 10 mA cm^(−2) for OER.Moreover,it can drive the liquid ZABs with high peak power density(106.4 mW cm^(−2)),specific capacity(720.7 mAh g^(−1)),outstanding long-term cycle stability(over 750 cycles at 10 mA cm^(−2)),and exhibits excellent feasibility in flexible all-solid-state ZABs.These findings provide new insights into the rational design of efficient bifunctional oxygen catalysts in rechargeable metal-air batteries.
基金Financial support was provided by the Guangdong College Students’Innovative Project(202110580014)the Guangdong “Climbing”Program for Research Items(pdjh2021b0544)。
文摘The next-generation energy storage systems such as fuel cells,metal-air batteries,and alkali metal(Li,Na)-chalcogen(S,Se)batteries have received increasing attention owing to their high energy density and low cost.However,one of the main obstacles of these systems is the poor reaction kinetics in the involved chemical reactions.Therefore,it is essential to incorporate suitable and efficient catalysts into the cell.These years,single-atom catalysts(SACs)are emerging as a frontier in catalysis due to their maximum atom efficiency and unique reaction selectivity.For SACs fabrication,metal-organic frameworks(MOFs)have been confirmed as promising templates or precursors due to their high metal loadings,structural adjustability,porosity,and tailorable catalytic site.In this review,we summarize effective strategies for fabricating SACs by MOFs with corresponding advanced characterization techniques and illustrate the key role of MOFs-based SACs in these batteries by explaining their reaction mechanisms and challenges.Finally,current applications,prospects,and opportunities for MOFs-based SACs in energy storage systems are discussed.
基金flnancial support from Australian Research Council through its Discovery,Future Fellowship ProgramsImam Mohammad Ibn Saud Islamic University (IMSIU) in Riyadh,Saudi Arabia,for flnancial support of this work.
文摘Zinc–bromine rechargeable batteries(ZBRBs)are one of the most powerful candidates for next-generation energy storage due to their potentially lower material cost,deep discharge capability,non-flammable electrolytes,relatively long lifetime and good reversibility.However,many opportunities remain to improve the efficiency and stability of these batteries for long-life operation.Here,we discuss the device configurations,working mechanisms and performance evaluation of ZBRBs.Both non-flow(static)and flow-type cells are highlighted in detail in this review.The fundamental electrochemical aspects,including the key challenges and promising solutions,are discussed,with particular attention paid to zinc and bromine half-cells,as their performance plays a critical role in determining the electrochemical performance of the battery system.The following sections examine the key performance metrics of ZBRBs and assessment methods using various ex situ and in situ/operando techniques.The review concludes with insights into future developments and prospects for high-performance ZBRBs.
基金supported by the Department of Science and Technology of Guangdong Province(2019A050510043)。
文摘Rechargeable aprotic Li-O_(2)batteries have attractea increasing attention due to their extremely high capacity,and it is very important to design appropriate strategies to synthesize efficient catalysts used as oxygen cathode.In present work,we present an expedient "instantaneous nucleation and epitaxial growth"(INEG) synthesis strategy for convenient and large-scale synthesis of ultrafine MOCPs nanoparticles(size 50-100 nm) with obvious advantages such as fast synthesis,high yields,low costs and reduced synthetic steps.The bimetallic Ru/Co-MOCPs are further pyrolyzed to obtain bimetallic Coand low content of Ru-based nanoparticles embedded within nitrogen-doped carbon(Ru/Co@N-C) as an efficient catalyst used in Li-O_(2)battery.The Ru/Co@N-C provides porous carbon framework for the ion transportation and O_(2)diffusion,and has large amounts of metal/nonmetal sites as active site to promote the oxygen reduction reaction(ORR)/oxygen evolution reaction(OER) in Li-O_(2)batteries.As a consequence,a high discharge specific capacity of 15246 mA h g^(-1)at 250 mA g^(-1), excellent rate capability at different current densities,and stable overpotential during cycling,are achieved.This work opened up a new understanding for the industrialized synthesis of ultrafine catalysts for Li-O_(2)batteries with excellent structural characteristics and electrochemical performance.
基金financial support from the Natural Science Foundation of Shandong Province(ZR2021ZD05)the Outstanding Talents in Shandong University。
文摘Cu-based cathodes in aqueous batteries become very attractive in view of high theoretical capacity,moderate operation voltage and rich reserves of raw materials.However,their applications are obstructed by serious side reactions.The side reaction mainly arises from the spontaneous formation of Cu_(2)O,which occupies the electrode surface and lowers the reaction reversibility.Here,Na_(2)EDTA is introduced to address these issues.Both experimental results and theoretical calculations indicate that the Na_(2)EDTA reshapes the solvation structure of Cu^(2+)and modifies the electrode/electrolyte interface.Therefore,the redox potential of Cu^(2+)/Cu_(2)O is reduced and the surface of Cu is protected from H2O,thereby inhibiting the formation of Cu_(2)O.Meanwhile,the change in the solvation structure reduces the electrostatic repulsion between Cu^(2+)and the cathode,leading to high local concentration and benefiting uniform deposition.The results shed light on the applications of rechargeable Cu-based batteries.
基金supported by the National Science Foundation of China(21805235)the Opening Foundation of Creative Platform of the Key Laboratory of the Education Department of Hunan Province(20K131)the Construct Program of the Key Discipline in Hunan Province。
文摘Rational design and exploration of low-cost and robust bifunctional oxygen electrocatalysts are vitally important for developing high-performance zinc-air batteries(ZABs).Herein,we reported a facile yet cost-efficient approach to construct a bifunctional oxygen reduction reaction(ORR)/oxygen evolution reaction(OER)electrocatalyst composed of N-doped porous carbon nanosheet flowers decorated with Fe Co nanoparticles(Fe Co/N-CF).Rational design of this catalyst is achieved by designing Schiff-base polymer with unique molecular structure via hydrogen bonding of cyanuramide and terephthalaldehyde polycondensate in the presence of metal cations.It exhibits excellent activity and stability for electrocatalysis of ORR/OER,enabling ZAB with a high peak power density of 172 m W cm^(-2)and a large specific capacity of 811 m A h g^(-1)Znat large current.The rechargeable ZAB demonstrates excellent durability for 1000 h with slight voltage decay,far outperforming a couple of precious Pt/Ir-based catalysts.Density functional theory(DFT)calculations reveal that high activity of bimetallic Fe Co stems from enhanced O_(2)and OH-adsorption and accelerated O_(2)dissociation by OAO bond activation.
基金financial support from the National Natural Science Foundation of China(Nos.21975159,2157316)the Shanghai Aerospace Science and Technology Innovation Fund(No.SAST2018-117)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(No.WH410260401/006)。
文摘Rechargeable magnesium batteries(RMBs)are considered the promising candidates for post lithium-ion batteries due to the abundant storage,high capacity,and dendrite-rare characteristic of Mg anode.However,the lack of practical electrolytes impedes the development and application of RMBs.Here,through a one-step reaction of LiCl congenital-containing Knochel–Hauser base TMPL(2,2,6,6-tetrame thylpiperidinylmagnesium chloride lithium chloride complex)with Lewis acid AlCl_(3),we successfully synthesized an efficient amino-magnesium halide TMPLA electrolyte.Raman and mass spectroscopy identified that the electrolyte comprises the typical di-nuclear copolymer[Mg_(2)Cl_(3)·6THF]+cation group and[(TMP)2AlCl_(2)]-anion group,further supported by the results of density functional theory calculations(DFT)and the Molecular dynamics(MD)simulations.The TMPLA electrolyte exhibits promising electrochemical performance,including available anodic stability(>2.65 V vs.SS),high ionic conductivity(6.05mS cm^(-1)),and low overpotential(<0.1 V)as well as appropriate Coulombic efficiency(97.3%)for Mg plating/stripping.Both the insertion Mo6S8cathode and conversion Cu S cathode delivered a desirable electrochemical performance with high capacity and good cycling stability based on the TMPLA electrolyte.In particular,when compatible with low cost and easily synthesized Cu S,the Cu S||Mg cell displayed an extremely high discharge capacity of 458.8 mAh g^(-1)for the first cycle and stabilized at 170.2 mAh g^(-1)with high Coulombic efficiency(99.1%)after 50 cycles at 0.05 C.Our work proposes an efficient electrolyte with impressive compatibility with Mg anode and insertion/conversion cathode for practical RMBs and provides a more profound knowledge of the Lewis acid–base reaction mechanisms.
基金supported by the National Natural Science Foundation of China (Grant No.22075028).
文摘Rechargeable aluminum batteries(RABs)are attractive cadidates for next-generation energy storage and conversion,due to the low cost and high safety of Al resources,and high capacity of metal Al based on the three-electrons reaction mechanism.However,the development of RABs is greatly limited,because of the lack of advanced cathode materials,and their complicated and unclear reaction mechanisms.Exploring the novel nanostructured transition metal and carbon composites is an effective route for obtaining ideal cathode materials.In this work,we synthesize porous CoSnO_(3)/C nanocubes with oxygen vacancies for utilizing as cathodes in RABs for the first time.The intrinsic structure stability of the mixed metal cations and carbon coating can improve the cycling performance of cathodes by regulating the internal strains of the electrodes during volume expansion.The nanocubes with porous structures contribute to fast mass transportation which improves the rate capability.In addition to this,abundant oxygen vacancies promote the adsorption affinity of cathodes,which improves storage capacity.As a result,the CoSnO_(3)/C cathodes display an excellent reversible capacity of 292.1 mAh g^(-1) at 0.1 A g^(-1),a good rate performance with 109 mAh g^(-1) that is maintained even at 1 A g^(-1) and the provided stable cycling behavior for 500 cycles.Besides,a mechanism of intercalation of Al^(3+)within CoSnO_(3)/C cathode is proposed for the electrochemical process.Overall,this work provides a step toward the development of advanced cathode materials for RABs by engineering novel nanostructured mixed transition-metal oxides with carbon composite and proposes novel insights into chemistry for RABs.
基金Projects(21071153,20976198)supported by the National Natural Science Foundation of China
文摘Nanostructured MnO2/CNT composite was synthesized by a soft template approach in the presence of Pluronic P123 surfactant. The product was characterized by X-ray diffraction, thermogravimetric and differential thermal analyses, Fourier transformed infrared spectroscopy and high-resolution transmission electron microscopy. The results show that the sample consists of poor crystalline α-MnO2 nanorods with a diameter of about 10 nm and a length of 30-50 nm, which absorb on the carbon nanotubes. The electrochemical properties of the product as cathode material for Li-MnO2 cell are evaluated by galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). Compared with pure MnO2 electrode, the MnO2/CNT composite delivers a much larger initial capacity of 275.3 mA-h/g and better rate and cycling performance.
基金supported by the National Natural Science Foundation of China (Grant No. 21404014)the Science & Technology Department of Jilin Province (No. 20170101177JC)
文摘An in situ coupling strategy to prepare Co_9S_8/S and N dual?doped graphene composite(Co_9S_8/NSG) has been proposed. The key point of this strategy is the function?oriented design of organic compounds. Herein, cobalt porphyrin derivatives with sulfo groups are employed as not only the coupling agents to form and anchor Co_9S_8 on the graphene in situ, but also the heteroatom?doped agent to generate S and N dual?doped graphene. The tight coupling of multiple active sites endows the composite materials with fast electrochemical kinetics and excellent stability for both oxygen reduction reaction(ORR) and oxygen evolution reaction(OER). The obtained electrocatalyst exhibits better activity parameter(ΔE = 0.82 V) and smaller Tafel slope(47.7 mV dec^(-1) for ORR and 69.2 mV dec^(-1) for OER) than commercially available Pt/C and RuO_2. Most importantly, as electrocatalyst for rechargeable Zn–air battery, Co_9S_8/NSG displays low charge–discharge voltage gap and outstanding long?term cycle stability over 138 h compared to Pt/C–RuO_2. To further broaden its application scope, a homemade all?solid?state Zn–air battery is also prepared, which displays good charge–discharge performance and cycle performance. The function?oriented design of N_4?metallomacrocycle derivatives might open new avenues to strategic construction of high?performance and long?life multifunctional electrocatalysts for wider electro?chemical energy applications.
基金supported by the Ministry of Education, Singapore, Tier 2 (MOE2015-T2-1-148) and Tier 1 (Grant No. M4011424.110)National Natural Science Foundation of China (No. 21503025)+2 种基金Fundamental Research Funds for Central Universities (No. 106112016CDJZR325520)Key Program for International Science and Technology Cooperation of Ministry of Science and Technology of China (No. 2016YFE0125900)Hundred Talents Program at Chongqing University
文摘Over the past decades, a series of aqueous rechargeable batteries(ARBs) were explored, investigated and demonstrated. Among them,aqueous rechargeable alkali-metal ion(Li^+Na^+, K^+) batteries, aqueous rechargeable-metal ion(Zn^(2+),Mg^(2+), Ca^(2+), Al^(3+)) batteries and aqueous rechargeable hybrid batteries are standing out due to peculiar properties. In this review, we focus on the fundamental basics of these batteries, and discuss the scientific and/or technological achievements and challenges. By critically reviewing state-of-the-art technologies and the most promising results so far, we aim to analyze the benefits of ARBs and the critical issues to be addressed, and to promote better development of ARBs.
基金supported by the Guangdong Natural Science Funds for Distinguished Young Scholar (2014A030306048)National Natural Science Foundation of China (21403306)+3 种基金Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program (2015TQO1C205)Pearl River Nova Program of Guangzhou (201610010080)Open Fund of Jiangsu Key Laboratory of Materials and Technology for Energy Conversion (MTEC-2015M05)Training Program of Scientific and Technological Innovation for Undergraduates (pdjh2017a0003)
文摘The overall electrochemical performances of Ni-Zn batteries are still far from satisfactory, specifically for rate performance and cycling stability Herein, we demonstrated a high-performance flexible Ni//Zn battery with outstanding durability and high power density based on selfsupported NiCo_2 O_4 nanosheets as cathode and Zn nanosheets as anode. This Ni//Zn battery is able to deliver a remarkable capacity of183.1 mAh g^(-1) and a good cycling performance(82.7% capacity retention after 3500 cycles). More importantly, this battery achieves an admirable power density of 49.0 kW kg^(-1) and energy density of 303.8 Wh kg^(-1), substantially higher than most recently reported batteries. With such excellent electrochemical performance, this battery will have great potential as an ultrafast power source in practical application.