针对密文检索中存在的计算量大、检索效率不高的问题,提出一种基于Simhash的安全密文排序检索方案。该方案基于Simhash的降维思想构建安全多关键词密文排序检索索引(SMRI),将文档处理成指纹和向量,利用分段指纹和加密向量构建B+树,并采...针对密文检索中存在的计算量大、检索效率不高的问题,提出一种基于Simhash的安全密文排序检索方案。该方案基于Simhash的降维思想构建安全多关键词密文排序检索索引(SMRI),将文档处理成指纹和向量,利用分段指纹和加密向量构建B+树,并采用“过滤精化”策略进行检索和排序,首先通过分段指纹的匹配进行快速检索,得到候选结果集;然后通过计算候选结果集与查询陷门的汉明距离和向量内积进行排序,带密钥的Simhash算法和安全k近邻(S k NN)算法保证了检索过程的安全性。实验结果表明,与基于向量空间模型(VSM)的方案相比,基于SMRI的排序检索方案计算量小,能节约时间和空间成本,检索效率高,适用于海量加密数据的快速安全检索。展开更多
基金国家自然科学基金项目(6082520260803079+6 种基金6092100361070072)资助国家科技支撑计划项目(2009BAH51B02)资助"核高基"国家科技重大专项(2010ZX01045-001-005)资助长江学者奖励计划项目资助新世纪优秀人才支持计划项目(NECT-08-0433)资助IBM Research China University Relation Program资助
文摘针对密文检索中存在的计算量大、检索效率不高的问题,提出一种基于Simhash的安全密文排序检索方案。该方案基于Simhash的降维思想构建安全多关键词密文排序检索索引(SMRI),将文档处理成指纹和向量,利用分段指纹和加密向量构建B+树,并采用“过滤精化”策略进行检索和排序,首先通过分段指纹的匹配进行快速检索,得到候选结果集;然后通过计算候选结果集与查询陷门的汉明距离和向量内积进行排序,带密钥的Simhash算法和安全k近邻(S k NN)算法保证了检索过程的安全性。实验结果表明,与基于向量空间模型(VSM)的方案相比,基于SMRI的排序检索方案计算量小,能节约时间和空间成本,检索效率高,适用于海量加密数据的快速安全检索。