Neural Networks (NN) are the functional unit of Deep Learning and are known to mimic the behavior of the human brain to solve complex data-driven problems. Whenever we train our own neural networks, we need to take ca...Neural Networks (NN) are the functional unit of Deep Learning and are known to mimic the behavior of the human brain to solve complex data-driven problems. Whenever we train our own neural networks, we need to take care of something called the generalization of the neural network. The performance of Artificial Neural Networks (ANN) mostly depends upon its generalization capability. In this paper, we propose an innovative approach to enhance the generalization capability of artificial neural networks (ANN) using structural redundancy. A novel perspective on handling input data prototypes and their impact on the development of generalization, which could improve to ANN architectures accuracy and reliability is described.展开更多
Intrusion detection system ean make effective alarm for illegality of networkusers, which is absolutely necessarily and important to build security environment of communicationbase service According to the principle t...Intrusion detection system ean make effective alarm for illegality of networkusers, which is absolutely necessarily and important to build security environment of communicationbase service According to the principle that the number of network traffic can affect the degree ofself-similar traffic, the paper investigates the variety of self-similarity resulted fromunconventional network traffic. A network traffic model based on normal behaviors of user isproposed and the Hursl parameter of this model can be calculated. By comparing the Hurst parameterof normal traffic and the self-similar parameter, we ean judge whether the network is normal or notand alarm in time.展开更多
Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solv...Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solve the loading problems of large-tonnage cranes during testing, an equivalency test is proposed based on the similarity theory and BP neural networks. The maximum stress and displacement of a large bridge crane is tested in small loads, combined with the training neural network of a similar structure crane through stress and displacement data which is collected by a physics simulation progressively loaded to a static load test load within the material scope of work. The maximum stress and displacement of a crane under a static load test load can be predicted through the relationship of stress, displacement, and load. By measuring the stress and displacement of small tonnage weights, the stress and displacement of large loads can be predicted, such as the maximum load capacity, which is 1.25 times the rated capacity. Experimental study shows that the load reduction test method can reflect the lift capacity of large bridge cranes. The load shedding predictive analysis for Sanxia 1200 t bridge crane test data indicates that when the load is 1.25 times the rated lifting capacity, the predicted displacement and actual displacement error is zero. The method solves the problem that lifting capacities are difficult to obtain and testing accidents are easily possible when 1.25 times related weight loads are tested for large tonnage cranes.展开更多
With the popularity of wireless networks and the prevalence of personal mobile computing devices, understanding the characteristic of wireless network users is of great significance to the network performance. In this...With the popularity of wireless networks and the prevalence of personal mobile computing devices, understanding the characteristic of wireless network users is of great significance to the network performance. In this study, system logs from two universities, Dartmouth College and Shanghai Jiao Tong University(SJTU), were mined and analyzed. Every user's log was represented by a user profile. A novel weighted social similarity was proposed to quantify the resemblance of users considering influence of location visits. Based on the similarity, an unsupervised learning method was applied to cluster users. Though environment parameters are different, two universities both form many social groups with Pareto distribution of similarity and exponential distribution of group sizes. These findings are very important to the research of wireless network and social network .展开更多
Identifying associations between microRNAs(miRNAs)and diseases is very important to understand the occurrence and development of human diseases.However,these existing methods suffer from the following limitation:first...Identifying associations between microRNAs(miRNAs)and diseases is very important to understand the occurrence and development of human diseases.However,these existing methods suffer from the following limitation:first,some disease-related miRNAs are obtained from the miRNA functional similarity networks consisting of heterogeneous data sources,i.e.,disease similarity,protein interaction network,gene expression.Second,little approaches infer disease-related miRNAs depending on the network topological features without the functional similarity of miRNAs.In this paper,we develop a novel model of Integrating Network Topology Similarity and MicroRNA Function Similarity(INTS-MFS).The integrated miRNA similarities are calculated based on miRNA functional similarity and network topological characteristics.INTS-MFS obtained AUC of 0.872 based on five-fold cross-validation and was applied to three common human diseases in case studies.As a results,30 out of top 30 predicted Prostatic Neoplasm-related miRNAs were included in the two databases of dbDEMC and PhenomiR2.0.29 out of top 30 predicted Lung Neoplasm-related miRNAs and Breast Neoplasm-related miRNAs were included in dbDEMC,PhenomiR2.0 and experimental reports.Moreover,INTS-MFS found unknown association with hsa-mir-371a in breast cancer and lung cancer,which have not been reported.It provides biologists new clues for diagnosing breast and lung cancer.展开更多
This paper proposes the new definition of the community structure of the weighted networks that groups of nodes in which the edge's weights distribute uniformly but at random between them. It can describe the steady ...This paper proposes the new definition of the community structure of the weighted networks that groups of nodes in which the edge's weights distribute uniformly but at random between them. It can describe the steady connections between nodes or some similarity between nodes' functions effectively. In order to detect the community structure efficiently, a threshold coefficient t~ to evaluate the equivalence of edges' weights and a new weighted modularity based on the weight's similarity are proposed. Then, constructing the weighted matrix and using the agglomerative mechanism, it presents a weight's agglomerative method based on optimizing the modularity to detect communities. For a network with n nodes, the algorithm can detect the community structure in time O(n2 log~). Simulations on networks show that the algorithm has higher accuracy and precision than the existing techniques. Furthermore, with the change of t~ the algorithm discovers a special hierarchical organization which can describe the various steady connections between nodes in groups.展开更多
Coarse graining of complex networks is an important method to study large-scale complex networks, and is also in the focus of network science today. This paper tries to develop a new coarse-graining method for complex...Coarse graining of complex networks is an important method to study large-scale complex networks, and is also in the focus of network science today. This paper tries to develop a new coarse-graining method for complex networks, which is based on the node similarity index. From the information structure of the network node similarity, the coarse-grained network is extracted by defining the local similarity and the global similarity index of nodes. A large number of simulation experiments show that the proposed method can effectively reduce the size of the network, while maintaining some statistical properties of the original network to some extent. Moreover, the proposed method has low computational complexity and allows people to freely choose the size of the reduced networks.展开更多
Functional brain network (FBN) measures based on functional magnetic resonance imaging (fMRI) data, has become important biomarkers for early diagnosis and prediction of clinical outcomes in neurological diseases, suc...Functional brain network (FBN) measures based on functional magnetic resonance imaging (fMRI) data, has become important biomarkers for early diagnosis and prediction of clinical outcomes in neurological diseases, such as Alzheimer’s diseases (AD) and its prodromal state (<em>i</em>.<em>e</em>., Mild cognitive impairment, MCI). In the past decades, researchers have developed numbers of approaches for FBN estimation, including Pearson’s correction (PC), sparse representation (SR), and so on. Despite their popularity and wide applications in current studies, most of the approaches for FBN estimation only consider the dependency between the measured blood oxygen level dependent (BOLD) time series, but ignore the spatial relationships between pairs of brain regions. In practice, the strength of functional connection between brain regions will decrease as their distance increases. Inspired by this, we proposed a new approach for FBN estimation based on the assumption that the closer brain regions tend to share stronger relationships or similarities. To verify the effectiveness of the proposed method, we conduct experiments on a public dataset to identify the patients with MCIs from health controls (HCs) using the estimated FBNs. Experimental results demonstrate that the proposed approach yields statistically significant improvement in seven performance metrics over using the baseline methods.展开更多
文摘Neural Networks (NN) are the functional unit of Deep Learning and are known to mimic the behavior of the human brain to solve complex data-driven problems. Whenever we train our own neural networks, we need to take care of something called the generalization of the neural network. The performance of Artificial Neural Networks (ANN) mostly depends upon its generalization capability. In this paper, we propose an innovative approach to enhance the generalization capability of artificial neural networks (ANN) using structural redundancy. A novel perspective on handling input data prototypes and their impact on the development of generalization, which could improve to ANN architectures accuracy and reliability is described.
文摘Intrusion detection system ean make effective alarm for illegality of networkusers, which is absolutely necessarily and important to build security environment of communicationbase service According to the principle that the number of network traffic can affect the degree ofself-similar traffic, the paper investigates the variety of self-similarity resulted fromunconventional network traffic. A network traffic model based on normal behaviors of user isproposed and the Hursl parameter of this model can be calculated. By comparing the Hurst parameterof normal traffic and the self-similar parameter, we ean judge whether the network is normal or notand alarm in time.
基金Supported by National "Twelfth Five-Year" Plan for Science&Technology Support of China(Grant No.2011BAK06B05)National High-tech Research and Development Program of China(863 Program,Grant No.2013AA040203)Shanxi Scholarship Council of China(Grant No.2015-088)
文摘Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solve the loading problems of large-tonnage cranes during testing, an equivalency test is proposed based on the similarity theory and BP neural networks. The maximum stress and displacement of a large bridge crane is tested in small loads, combined with the training neural network of a similar structure crane through stress and displacement data which is collected by a physics simulation progressively loaded to a static load test load within the material scope of work. The maximum stress and displacement of a crane under a static load test load can be predicted through the relationship of stress, displacement, and load. By measuring the stress and displacement of small tonnage weights, the stress and displacement of large loads can be predicted, such as the maximum load capacity, which is 1.25 times the rated capacity. Experimental study shows that the load reduction test method can reflect the lift capacity of large bridge cranes. The load shedding predictive analysis for Sanxia 1200 t bridge crane test data indicates that when the load is 1.25 times the rated lifting capacity, the predicted displacement and actual displacement error is zero. The method solves the problem that lifting capacities are difficult to obtain and testing accidents are easily possible when 1.25 times related weight loads are tested for large tonnage cranes.
基金National Natural Science Foundation of China(No. 60970106)National High Technology Research and Development Program of China( No. 2011AA010500)
文摘With the popularity of wireless networks and the prevalence of personal mobile computing devices, understanding the characteristic of wireless network users is of great significance to the network performance. In this study, system logs from two universities, Dartmouth College and Shanghai Jiao Tong University(SJTU), were mined and analyzed. Every user's log was represented by a user profile. A novel weighted social similarity was proposed to quantify the resemblance of users considering influence of location visits. Based on the similarity, an unsupervised learning method was applied to cluster users. Though environment parameters are different, two universities both form many social groups with Pareto distribution of similarity and exponential distribution of group sizes. These findings are very important to the research of wireless network and social network .
基金This work was supported in part by the National Natural Science Foundation of China under Grants 61873089,62032007the Key Project of the Education Department of Hunan Province under Grant 20A087the Innovation Platform Open Fund Project of Hunan Provincial Education Department under Grant 20K025.
文摘Identifying associations between microRNAs(miRNAs)and diseases is very important to understand the occurrence and development of human diseases.However,these existing methods suffer from the following limitation:first,some disease-related miRNAs are obtained from the miRNA functional similarity networks consisting of heterogeneous data sources,i.e.,disease similarity,protein interaction network,gene expression.Second,little approaches infer disease-related miRNAs depending on the network topological features without the functional similarity of miRNAs.In this paper,we develop a novel model of Integrating Network Topology Similarity and MicroRNA Function Similarity(INTS-MFS).The integrated miRNA similarities are calculated based on miRNA functional similarity and network topological characteristics.INTS-MFS obtained AUC of 0.872 based on five-fold cross-validation and was applied to three common human diseases in case studies.As a results,30 out of top 30 predicted Prostatic Neoplasm-related miRNAs were included in the two databases of dbDEMC and PhenomiR2.0.29 out of top 30 predicted Lung Neoplasm-related miRNAs and Breast Neoplasm-related miRNAs were included in dbDEMC,PhenomiR2.0 and experimental reports.Moreover,INTS-MFS found unknown association with hsa-mir-371a in breast cancer and lung cancer,which have not been reported.It provides biologists new clues for diagnosing breast and lung cancer.
基金supported by the Fundamental Research Funds for the Central Universities (Grant Nos. KYZ200916,KYZ200919 and KYZ201005)the Youth Sci-Tech Innovation Fund,Nanjing Agricultural University (Grant No. KJ2010024)
文摘This paper proposes the new definition of the community structure of the weighted networks that groups of nodes in which the edge's weights distribute uniformly but at random between them. It can describe the steady connections between nodes or some similarity between nodes' functions effectively. In order to detect the community structure efficiently, a threshold coefficient t~ to evaluate the equivalence of edges' weights and a new weighted modularity based on the weight's similarity are proposed. Then, constructing the weighted matrix and using the agglomerative mechanism, it presents a weight's agglomerative method based on optimizing the modularity to detect communities. For a network with n nodes, the algorithm can detect the community structure in time O(n2 log~). Simulations on networks show that the algorithm has higher accuracy and precision than the existing techniques. Furthermore, with the change of t~ the algorithm discovers a special hierarchical organization which can describe the various steady connections between nodes in groups.
文摘Coarse graining of complex networks is an important method to study large-scale complex networks, and is also in the focus of network science today. This paper tries to develop a new coarse-graining method for complex networks, which is based on the node similarity index. From the information structure of the network node similarity, the coarse-grained network is extracted by defining the local similarity and the global similarity index of nodes. A large number of simulation experiments show that the proposed method can effectively reduce the size of the network, while maintaining some statistical properties of the original network to some extent. Moreover, the proposed method has low computational complexity and allows people to freely choose the size of the reduced networks.
文摘Functional brain network (FBN) measures based on functional magnetic resonance imaging (fMRI) data, has become important biomarkers for early diagnosis and prediction of clinical outcomes in neurological diseases, such as Alzheimer’s diseases (AD) and its prodromal state (<em>i</em>.<em>e</em>., Mild cognitive impairment, MCI). In the past decades, researchers have developed numbers of approaches for FBN estimation, including Pearson’s correction (PC), sparse representation (SR), and so on. Despite their popularity and wide applications in current studies, most of the approaches for FBN estimation only consider the dependency between the measured blood oxygen level dependent (BOLD) time series, but ignore the spatial relationships between pairs of brain regions. In practice, the strength of functional connection between brain regions will decrease as their distance increases. Inspired by this, we proposed a new approach for FBN estimation based on the assumption that the closer brain regions tend to share stronger relationships or similarities. To verify the effectiveness of the proposed method, we conduct experiments on a public dataset to identify the patients with MCIs from health controls (HCs) using the estimated FBNs. Experimental results demonstrate that the proposed approach yields statistically significant improvement in seven performance metrics over using the baseline methods.