以专利引证网络为载体,从知识基因稳定性、遗传性以及变异性等基本特征出发,提出一种基于subject-action-object三元组的知识基因提取方法.应用连接度算法分析专利引证关系,挖掘引证专利和被引专利之间继承和发展的知识流,建立知识进化...以专利引证网络为载体,从知识基因稳定性、遗传性以及变异性等基本特征出发,提出一种基于subject-action-object三元组的知识基因提取方法.应用连接度算法分析专利引证关系,挖掘引证专利和被引专利之间继承和发展的知识流,建立知识进化轨迹;利用文本语法分析技术,从专利权利要求书中提取subject-action-object三元组;基于语义词库WordNet进行语义加工,计算语义相似度,合并同义的subject-action-object三元组,绘制知识基因图谱.从美国专利数据库中采集了5 073项1975—1999年授权的数据挖掘领域的相关专利,分析了专利的地区分布情况和年度分布情况.从NBER(National Bureau of Economic Research)的专利数据集中查询得到专利引证关系,利用网络分析软件Pajek构建专利引证网络,作为实验数据样本,对所提出的知识基因提取方法进行验证.实验结果表明:所提取的subject-action-object三元组具备了知识基因稳定性、遗传性和变异性等特征,可以作为知识基因的一种表现形式.展开更多
Inspired by human behaviors, a robot object tracking model is proposed on the basis of visual attention mechanism, which is fit for the theory of topological perception. The model integrates the image-driven, bottom-u...Inspired by human behaviors, a robot object tracking model is proposed on the basis of visual attention mechanism, which is fit for the theory of topological perception. The model integrates the image-driven, bottom-up attention and the object-driven, top-down attention, whereas the previous attention model has mostly focused on either the bottom-up or top-down attention. By the bottom-up component, the whole scene is segmented into the ground region and the salient regions. Guided by top-down strategy which is achieved by a topological graph, the object regions are separated from the salient regions. The salient regions except the object regions are the barrier regions. In order to estimate the model, a mobile robot platform is developed, on which some experiments are implemented. The experimental results indicate that processing an image with a resolution of 752 × 480 pixels takes less than 200 ms and the object regions are unabridged. The analysis obtained by comparing the proposed model with the existing model demonstrates that the proposed model has some advantages in robot object tracking in terms of speed and efficiency.展开更多
文摘以专利引证网络为载体,从知识基因稳定性、遗传性以及变异性等基本特征出发,提出一种基于subject-action-object三元组的知识基因提取方法.应用连接度算法分析专利引证关系,挖掘引证专利和被引专利之间继承和发展的知识流,建立知识进化轨迹;利用文本语法分析技术,从专利权利要求书中提取subject-action-object三元组;基于语义词库WordNet进行语义加工,计算语义相似度,合并同义的subject-action-object三元组,绘制知识基因图谱.从美国专利数据库中采集了5 073项1975—1999年授权的数据挖掘领域的相关专利,分析了专利的地区分布情况和年度分布情况.从NBER(National Bureau of Economic Research)的专利数据集中查询得到专利引证关系,利用网络分析软件Pajek构建专利引证网络,作为实验数据样本,对所提出的知识基因提取方法进行验证.实验结果表明:所提取的subject-action-object三元组具备了知识基因稳定性、遗传性和变异性等特征,可以作为知识基因的一种表现形式.
基金supported by National Basic Research Program of China (973 Program) (No. 2006CB300407)National Natural Science Foundation of China (No. 50775017)
文摘Inspired by human behaviors, a robot object tracking model is proposed on the basis of visual attention mechanism, which is fit for the theory of topological perception. The model integrates the image-driven, bottom-up attention and the object-driven, top-down attention, whereas the previous attention model has mostly focused on either the bottom-up or top-down attention. By the bottom-up component, the whole scene is segmented into the ground region and the salient regions. Guided by top-down strategy which is achieved by a topological graph, the object regions are separated from the salient regions. The salient regions except the object regions are the barrier regions. In order to estimate the model, a mobile robot platform is developed, on which some experiments are implemented. The experimental results indicate that processing an image with a resolution of 752 × 480 pixels takes less than 200 ms and the object regions are unabridged. The analysis obtained by comparing the proposed model with the existing model demonstrates that the proposed model has some advantages in robot object tracking in terms of speed and efficiency.