A priori knowledge of the number of tags is crucial for anti-collision protocols in slotted UHF RFID systems.The number of tags is used to decide optimal frame length in dynamic frame slotted ALOHA(DFSA)and to adjust ...A priori knowledge of the number of tags is crucial for anti-collision protocols in slotted UHF RFID systems.The number of tags is used to decide optimal frame length in dynamic frame slotted ALOHA(DFSA)and to adjust access probability in random access protocols.Conventional researches estimate the number of tags in MAC layer based on statistics of empty slots,collided slots and successful slots.Usually,a collision detection algorithm is employed to determine types of time slots.Only three types are distinguished because of lack of ability to detect the number of tags in single time slot.In this paper,a physical layer algorithm is proposed to detect the number of tags in a collided slot.Mean shift algorithm is utilized,and some properties of backscatter signals are investigated.Simulation results verify the effectiveness of the proposed solution in terms of low estimation error with a high SNR range,outperforming the existing MAC layer approaches.展开更多
In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,w...In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,which results in a collision and leads to the degrading of tags identifying efficiency.To improve the multiple tags’identifying efficiency due to collision,a physical layer network coding based binary search tree algorithm(PNBA)is proposed in this paper.PNBA pushes the conflicting signal information of multiple tags into a stack,which is discarded by the traditional anti-collision algorithm.In addition,physical layer network coding is exploited by PNBA to obtain unread tag information through the decoding operation of physical layer network coding using the conflicting information in the stack.Therefore,PNBA reduces the number of interactions between reader and tags,and improves the tags identification efficiency.Theoretical analysis and simulation results using MATLAB demonstrate that PNBA reduces the number of readings,and improve RFID identification efficiency.Especially,when the number of tags to be identified is 100,the average needed reading number of PNBA is 83%lower than the basic binary search tree algorithm,43%lower than reverse binary search tree algorithm,and its reading efficiency reaches 0.93.展开更多
An RF-UCard system is a contactless smartcard system with multiple chip operating systems and multiple applications. A multi-card collision occurs when more than one card within the reader’s read field and thus lower...An RF-UCard system is a contactless smartcard system with multiple chip operating systems and multiple applications. A multi-card collision occurs when more than one card within the reader’s read field and thus lowers the efficiency of the system. This paper presents a novel and enhanced algorithm to solve the multi-card collision problems in an RF-UCard system. The algorithm was originally inspired from framed ALOHA-based anti-collision algorithms applied in RFID systems. To maximize the system efficiency, a synchronous dynamic adjusting (SDA) scheme that adjusts both the frame size in the reader and the response probability in cards is developed and evaluated. Based on some mathematical results derived from the Poisson process and the occupancy problem, the algorithm takes the estimated card quantity and the new arriving cards in the current read cycle into consideration to adjust the frame size for the next read cycle. Also it changes the card response probability according to the request commands sent from the reader. Simulation results show that SDA outperforms other ALOHA-based anti-collision algorithms applied in RFID systems.展开更多
This paper introduces several common binary tree anti-collision algorithms. They are binary tree algorithm, dynamic binary tree algorithm, and backward binary tree algorithm. Then, based on these algorithms, an improv...This paper introduces several common binary tree anti-collision algorithms. They are binary tree algorithm, dynamic binary tree algorithm, and backward binary tree algorithm. Then, based on these algorithms, an improved binary tree algorithm is proposed. Simulation and results analysis show that the improved binary anti-collision algorithm has higher performance than other binary tree algorithms, and improves the efficiency of RFID card reader searching card in multi-label environment.展开更多
In this work,an optimal Q algorithm based on a collision recovery scheme is presented. Tags use BIBD-( 16,4,1) codes instead of RN16 s. Therefore,readers can make a valid recognition even in collision slots. A way of ...In this work,an optimal Q algorithm based on a collision recovery scheme is presented. Tags use BIBD-( 16,4,1) codes instead of RN16 s. Therefore,readers can make a valid recognition even in collision slots. A way of getting the optimal slot-count parameter is studied and an optimal Q algorithm is proposed. The theoretical and simulation results show that the proposed algorithm can improve reading efficiency by 100% more than the conventional Q algorithm. Moreover,the proposed scheme changes little to the existing standard. Thus,it is easy to implement and compatible with ISO 18000-6C.展开更多
Tag collision algorithm is a key issue for energy saving and throughput with Radio Frequency IDentification (RFID) system more popular in sensing infrastructure of covering wider area on a large scale. Exploiting low ...Tag collision algorithm is a key issue for energy saving and throughput with Radio Frequency IDentification (RFID) system more popular in sensing infrastructure of covering wider area on a large scale. Exploiting low energy consumption strategy would enable longer operational life of tags and reader with battery energy supply. And improving throughput is required on a large scale to preserve the capability of the correct reception. Therefore, this paper proposes an enhanced anti-collision algorithm called Dynamic Slotted with Muting (DSM), which uses multiple slots within a frame per node in a binary tree and takes tag estimation function to optimize the number of slots, and adds a mute command to put identified tags silence. The performance of the proposed algorithm is analytically provided, and simulation results show that DSM saves more than 40% energy consumptions both at reader and tags, and improves more than 35% throughput compared to the existing algorithms. Thus our algorithm is demonstrated to perform efficient energy savings at reader and tags with throughput improvement.展开更多
基金This work was supported in part by the National Natural Science Foundation of China under project contracts[NOS.61601093,61791082,61701116,61371047]in part by Sichuan Provincial Science and Technology Planning Program of China under project contracts No.2016GZ0061 and No.2018HH0044+2 种基金in part by Guangdong Provincial Science and Technology Planning Program of China under project contracts No.2015B090909004 and No.2016A010101036in part by the fundamental research funds for the Central Universities under project contract No.ZYGX2016Z011in part by Science and Technology on Electronic Information Control Laboratory.
文摘A priori knowledge of the number of tags is crucial for anti-collision protocols in slotted UHF RFID systems.The number of tags is used to decide optimal frame length in dynamic frame slotted ALOHA(DFSA)and to adjust access probability in random access protocols.Conventional researches estimate the number of tags in MAC layer based on statistics of empty slots,collided slots and successful slots.Usually,a collision detection algorithm is employed to determine types of time slots.Only three types are distinguished because of lack of ability to detect the number of tags in single time slot.In this paper,a physical layer algorithm is proposed to detect the number of tags in a collided slot.Mean shift algorithm is utilized,and some properties of backscatter signals are investigated.Simulation results verify the effectiveness of the proposed solution in terms of low estimation error with a high SNR range,outperforming the existing MAC layer approaches.
基金the National Natural Science Foundation of China under Grant 61502411Natural Science Foundation of Jiangsu Province under Grant BK20150432 and BK20151299+7 种基金Natural Science Research Project for Universities of Jiangsu Province under Grant 15KJB520034China Postdoctoral Science Foundation under Grant 2015M581843Jiangsu Provincial Qinglan ProjectTeachers Overseas Study Program of Yancheng Institute of TechnologyJiangsu Provincial Government Scholarship for Overseas StudiesTalents Project of Yancheng Institute of Technology under Grant KJC2014038“2311”Talent Project of Yancheng Institute of TechnologyOpen Fund of Modern Agricultural Resources Intelligent Management and Application Laboratory of Huzhou Normal University.
文摘In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,which results in a collision and leads to the degrading of tags identifying efficiency.To improve the multiple tags’identifying efficiency due to collision,a physical layer network coding based binary search tree algorithm(PNBA)is proposed in this paper.PNBA pushes the conflicting signal information of multiple tags into a stack,which is discarded by the traditional anti-collision algorithm.In addition,physical layer network coding is exploited by PNBA to obtain unread tag information through the decoding operation of physical layer network coding using the conflicting information in the stack.Therefore,PNBA reduces the number of interactions between reader and tags,and improves the tags identification efficiency.Theoretical analysis and simulation results using MATLAB demonstrate that PNBA reduces the number of readings,and improve RFID identification efficiency.Especially,when the number of tags to be identified is 100,the average needed reading number of PNBA is 83%lower than the basic binary search tree algorithm,43%lower than reverse binary search tree algorithm,and its reading efficiency reaches 0.93.
文摘An RF-UCard system is a contactless smartcard system with multiple chip operating systems and multiple applications. A multi-card collision occurs when more than one card within the reader’s read field and thus lowers the efficiency of the system. This paper presents a novel and enhanced algorithm to solve the multi-card collision problems in an RF-UCard system. The algorithm was originally inspired from framed ALOHA-based anti-collision algorithms applied in RFID systems. To maximize the system efficiency, a synchronous dynamic adjusting (SDA) scheme that adjusts both the frame size in the reader and the response probability in cards is developed and evaluated. Based on some mathematical results derived from the Poisson process and the occupancy problem, the algorithm takes the estimated card quantity and the new arriving cards in the current read cycle into consideration to adjust the frame size for the next read cycle. Also it changes the card response probability according to the request commands sent from the reader. Simulation results show that SDA outperforms other ALOHA-based anti-collision algorithms applied in RFID systems.
文摘This paper introduces several common binary tree anti-collision algorithms. They are binary tree algorithm, dynamic binary tree algorithm, and backward binary tree algorithm. Then, based on these algorithms, an improved binary tree algorithm is proposed. Simulation and results analysis show that the improved binary anti-collision algorithm has higher performance than other binary tree algorithms, and improves the efficiency of RFID card reader searching card in multi-label environment.
基金Supported by the National Natural Science Foundation of China(No.61340005)Beijing Natural Science Foundation(No.4132012)+2 种基金Beijing Education Committee Science and Technology Development Plan(No.KM201411232011)Beijing Outstanding Personnel Training Project(No.2013D005007000006)Scientific Research Improving Project-Intelligent Sense and Information Processing(No.5211524100)
文摘In this work,an optimal Q algorithm based on a collision recovery scheme is presented. Tags use BIBD-( 16,4,1) codes instead of RN16 s. Therefore,readers can make a valid recognition even in collision slots. A way of getting the optimal slot-count parameter is studied and an optimal Q algorithm is proposed. The theoretical and simulation results show that the proposed algorithm can improve reading efficiency by 100% more than the conventional Q algorithm. Moreover,the proposed scheme changes little to the existing standard. Thus,it is easy to implement and compatible with ISO 18000-6C.
基金Supported by the Chongqing Education Administration Program Foundation of China (No.KJ110516)the Chongqing Natural Science Foundation of China (No.cstc2011jjA40014, No.cstc2011A40028)
文摘Tag collision algorithm is a key issue for energy saving and throughput with Radio Frequency IDentification (RFID) system more popular in sensing infrastructure of covering wider area on a large scale. Exploiting low energy consumption strategy would enable longer operational life of tags and reader with battery energy supply. And improving throughput is required on a large scale to preserve the capability of the correct reception. Therefore, this paper proposes an enhanced anti-collision algorithm called Dynamic Slotted with Muting (DSM), which uses multiple slots within a frame per node in a binary tree and takes tag estimation function to optimize the number of slots, and adds a mute command to put identified tags silence. The performance of the proposed algorithm is analytically provided, and simulation results show that DSM saves more than 40% energy consumptions both at reader and tags, and improves more than 35% throughput compared to the existing algorithms. Thus our algorithm is demonstrated to perform efficient energy savings at reader and tags with throughput improvement.