Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natura...Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natural rock.Extrusion free forming(EFF)is a 3D printing technique that uses clay as the printing material and cures the specimens through high-temperature sintering.In this study,we attempted to use the EFF technology to fabricate artificial rock specimens.The results show the physico-mechanical properties of the specimens are significantly affected by the sintering temperature,while the nozzle diameter and layer thickness also have a certain impact.The specimens are primarily composed of SiO_(2),with mineral compositions similar to that of natural rocks.The density,uniaxial compressive strength(UCS),elastic modulus,and tensile strength of the printed specimens fall in the range of 1.65–2.54 g/cm3,16.46–50.49 MPa,2.17–13.35 GPa,and 0.82–17.18 MPa,respectively.It is capable of simulating different types of rocks,especially mudstone,sandstone,limestone,and gneiss.However,the simulation of hard rocks with UCS exceeding 50 MPa still requires validation.展开更多
As one of the most frequently used language forms in people's daily communication,the address form carries many different social semantic meanings. This paper aims to compare western and eastern cultures through a...As one of the most frequently used language forms in people's daily communication,the address form carries many different social semantic meanings. This paper aims to compare western and eastern cultures through a tentative study of address forms in American English and Chinese. By finding their similarities and differences it will explore the deep structures of each culture.展开更多
During the product family design, it is necessary to reduce the variety of components and share common components among many products. The major benefits are lessened design efforts and reduced costs. Therefore, this ...During the product family design, it is necessary to reduce the variety of components and share common components among many products. The major benefits are lessened design efforts and reduced costs. Therefore, this paper presents an approach to standardize components of a product family. Form feature modeling for components is discussed. Based on the similarity analysis, a step by step method to standardize the feature architectures of components is described. The algorithms for standardization are identified as well. A case for standardizing components of an auto-body family is used to demonstrate the validity of this approach.展开更多
Harmonic mappings from the hexagasket to the circle are described in terms of boundary values and topological data. Explicit formulas are also given for the energy of the mapping. We have generalized the results in [10].
Squeezed quantum vacua seems to violate the averaged null energy conditions (ANEC’s), because they have a negative energy density. When treated as a perfect fluid, rapidly rotating Casimir plates will create vorticit...Squeezed quantum vacua seems to violate the averaged null energy conditions (ANEC’s), because they have a negative energy density. When treated as a perfect fluid, rapidly rotating Casimir plates will create vorticity in the vacuum bounded by them. The geometry resulting from an arbitrarily extended Casimir plates along their axis of rotation is similar to van Stockum spacetime. We observe closed timelike curves (CTC’s) forming in the exterior of the system resulting from frame dragging. The exterior geometry of this system is similar to Kerr geometry, but because of violation of ANEC, the Cauchy horizon lies outside the system unlike Kerr blackholes, giving more emphasis on whether spacetime is multiply connected at the microscopic level.展开更多
This article proves the existence of a hyper-precise global numerical meta-architecture unifying, structuring, binding and controlling the billion triplet codons constituting the sequence of single-stranded DNA of the...This article proves the existence of a hyper-precise global numerical meta-architecture unifying, structuring, binding and controlling the billion triplet codons constituting the sequence of single-stranded DNA of the entire human genome. Beyond the evolution and erratic mutations like transposons within the genome, it’s as if the memory of a fossil genome with multiple symmetries persists. This recalls the “intermingling” of information characterizing the fractal universe of chaos theory. The result leads to a balanced and perfect tuning between the masses of the two strands of the huge DNA molecule that constitute our genome. We show here how codon populations forming the single-stranded DNA sequences can constitute a critical approach to the understanding of junk DNA function. Then, we suggest revisiting certain methods published in our 2009 book “Codex Biogenesis”. In fact, we demonstrate here how the universal genetic code table is a powerful analytical filter to characterize single-stranded DNA sequences constituting chromosomes and genomes. We can then show that any genomic DNA sequence is featured by three numbers, which characterize it and its 64 codon populations with correlations greater than 99%. The number “1” is common to all sequences, expressing the second law of Chargaff. The other 2 numbers are related to each specific DNA sequence case characterizing life species. For example, the entire human genome is characterized by three remarkable numbers 1, 2, and Phi = 1.618 the golden ratio. Associated with each of these three numbers, we can match three axes of symmetry, then “imagine” a kind of hyperspace formed by these codon populations. Then we revisit the value (3-Phi)/2 which is probably universal and common to both the scale of quarks and atomic levels, balancing and tuning the whole human genome codon population. Finally, we demonstrate a new kind of duality between “form and substance” overlapping the whole human genome: we will show that—simultaneously with the duality between genes and junk DNA—there is a second layer of embedded hidden structure overlapping all the DNA of the whole human genome, dividing it into a second type of duality information/redundancy involving golden ratio proportions.展开更多
基金financially supported by the Beijing Natural Science Foundation for Young Scientists(Grant No.8214052)the Talent Fund of Beijing Jiaotong University(Grant No.2021RC226)the State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK2115).
文摘Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natural rock.Extrusion free forming(EFF)is a 3D printing technique that uses clay as the printing material and cures the specimens through high-temperature sintering.In this study,we attempted to use the EFF technology to fabricate artificial rock specimens.The results show the physico-mechanical properties of the specimens are significantly affected by the sintering temperature,while the nozzle diameter and layer thickness also have a certain impact.The specimens are primarily composed of SiO_(2),with mineral compositions similar to that of natural rocks.The density,uniaxial compressive strength(UCS),elastic modulus,and tensile strength of the printed specimens fall in the range of 1.65–2.54 g/cm3,16.46–50.49 MPa,2.17–13.35 GPa,and 0.82–17.18 MPa,respectively.It is capable of simulating different types of rocks,especially mudstone,sandstone,limestone,and gneiss.However,the simulation of hard rocks with UCS exceeding 50 MPa still requires validation.
文摘As one of the most frequently used language forms in people's daily communication,the address form carries many different social semantic meanings. This paper aims to compare western and eastern cultures through a tentative study of address forms in American English and Chinese. By finding their similarities and differences it will explore the deep structures of each culture.
基金Science & Technology Foundation of Shanghai (Grant No.05JC14021)
文摘During the product family design, it is necessary to reduce the variety of components and share common components among many products. The major benefits are lessened design efforts and reduced costs. Therefore, this paper presents an approach to standardize components of a product family. Form feature modeling for components is discussed. Based on the similarity analysis, a step by step method to standardize the feature architectures of components is described. The algorithms for standardization are identified as well. A case for standardizing components of an auto-body family is used to demonstrate the validity of this approach.
基金Supported by the grant 08KJD110011,NSK2008/B11,NSK2009/B07,NSK2009/C042008 Jiangsu Government Scholarship for Overseas Studies
文摘Harmonic mappings from the hexagasket to the circle are described in terms of boundary values and topological data. Explicit formulas are also given for the energy of the mapping. We have generalized the results in [10].
文摘Squeezed quantum vacua seems to violate the averaged null energy conditions (ANEC’s), because they have a negative energy density. When treated as a perfect fluid, rapidly rotating Casimir plates will create vorticity in the vacuum bounded by them. The geometry resulting from an arbitrarily extended Casimir plates along their axis of rotation is similar to van Stockum spacetime. We observe closed timelike curves (CTC’s) forming in the exterior of the system resulting from frame dragging. The exterior geometry of this system is similar to Kerr geometry, but because of violation of ANEC, the Cauchy horizon lies outside the system unlike Kerr blackholes, giving more emphasis on whether spacetime is multiply connected at the microscopic level.
文摘This article proves the existence of a hyper-precise global numerical meta-architecture unifying, structuring, binding and controlling the billion triplet codons constituting the sequence of single-stranded DNA of the entire human genome. Beyond the evolution and erratic mutations like transposons within the genome, it’s as if the memory of a fossil genome with multiple symmetries persists. This recalls the “intermingling” of information characterizing the fractal universe of chaos theory. The result leads to a balanced and perfect tuning between the masses of the two strands of the huge DNA molecule that constitute our genome. We show here how codon populations forming the single-stranded DNA sequences can constitute a critical approach to the understanding of junk DNA function. Then, we suggest revisiting certain methods published in our 2009 book “Codex Biogenesis”. In fact, we demonstrate here how the universal genetic code table is a powerful analytical filter to characterize single-stranded DNA sequences constituting chromosomes and genomes. We can then show that any genomic DNA sequence is featured by three numbers, which characterize it and its 64 codon populations with correlations greater than 99%. The number “1” is common to all sequences, expressing the second law of Chargaff. The other 2 numbers are related to each specific DNA sequence case characterizing life species. For example, the entire human genome is characterized by three remarkable numbers 1, 2, and Phi = 1.618 the golden ratio. Associated with each of these three numbers, we can match three axes of symmetry, then “imagine” a kind of hyperspace formed by these codon populations. Then we revisit the value (3-Phi)/2 which is probably universal and common to both the scale of quarks and atomic levels, balancing and tuning the whole human genome codon population. Finally, we demonstrate a new kind of duality between “form and substance” overlapping the whole human genome: we will show that—simultaneously with the duality between genes and junk DNA—there is a second layer of embedded hidden structure overlapping all the DNA of the whole human genome, dividing it into a second type of duality information/redundancy involving golden ratio proportions.