With the development of digital information technologies,robust watermarking framework is taken into real consideration as a challenging issue in the area of image processing,due to the large applicabilities and its u...With the development of digital information technologies,robust watermarking framework is taken into real consideration as a challenging issue in the area of image processing,due to the large applicabilities and its utilities in a number of academic and real environments.There are a wide range of solutions to provide image watermarking frameworks,while each one of them is attempted to address an efficient and applicable idea.In reality,the traditional techniques do not have sufficient merit to realize an accurate application.Due to the fact that the main idea behind the approach is organized based on contourlet representation,the only state-of-the-art materials that are investigated along with an integration of the aforementioned contourlet representation in line with watermarking framework are concentrated to be able to propose the novel and skilled technique.In a word,the main process of the proposed robust watermarking framework is organized to deal with both new embedding and de-embedding processes in the area of contourlet transform to generate watermarked image and the corresponding extracted logo image with high accuracy.In fact,the motivation of the approach is that the suggested complexity can be of novelty,which consists of the contourlet representation,the embedding and the corresponding de-embedding modules and the performance monitoring including an analysis of the watermarked image as well as the extracted logo image.There is also a scrambling module that is working in association with levels-directions decomposition in contourlet embedding mechanism,while a decision maker system is designed to deal with the appropriate number of sub-bands to be embedded in the presence of a series of simulated attacks.The required performance is tangibly considered through an integration of the peak signal-to-noise ratio and the structural similarity indices that are related to watermarked image.And the bit error rate and the normal correlation are considered that are related to the extracted logo analysis,as well.Subsequently,the outcomes are fully analyzed to be competitive with respect to the potential techniques in the image colour models including hue or tint in terms of their shade,saturation or amount of gray and their brightness via value or luminance and also hue,saturation and intensity representations,as long as the performance of the whole of channels are concentrated to be presented.The performance monitoring outcomes indicate that the proposed framework is of significance to be verified.展开更多
The quantitative structure-activity relationship(QSAR) of 2-alkyl-4-(biphenylylmethoxy) pyridine derivatives was studied.Three different alignment methods were used to get the models of the comparative molecular field...The quantitative structure-activity relationship(QSAR) of 2-alkyl-4-(biphenylylmethoxy) pyridine derivatives was studied.Three different alignment methods were used to get the models of the comparative molecular field analysis(CoMFA),the comparative molecular similarity indices analysis(CoMSIA),and the hologram quantitative structure?activity relationship(HQSAR).The statistical results from the established models show believable predictivity based on the cross-validated value(q2>0.5) and the non-validated value(r2>0.9),The analysis on contour maps of CoMFA and CoMSIA models suggests that hydrophobic and hydrogen-bond acceptor fields are important factors that affect the AT1 antagonistic activity of 2-alkyl-4-(biphenylylmethoxy) pyridine derivatives besides the steric and electrostatic fields,The structural modification information from different atom contributions in the HQSAR model is in agreement with that in the 3D-QSAR models.展开更多
The influence of non-Independent Identically Distribution(non-IID)data on Federated Learning(FL)has been a serious concern.Clustered Federated Learning(CFL)is an emerging approach for reducing the impact of non-IID da...The influence of non-Independent Identically Distribution(non-IID)data on Federated Learning(FL)has been a serious concern.Clustered Federated Learning(CFL)is an emerging approach for reducing the impact of non-IID data,which employs the client similarity calculated by relevant metrics for clustering.Unfortunately,the existing CFL methods only pursue a single accuracy improvement,but ignore the convergence rate.Additionlly,the designed client selection strategy will affect the clustering results.Finally,traditional semi-supervised learning changes the distribution of data on clients,resulting in higher local costs and undesirable performance.In this paper,we propose a novel CFL method named ASCFL,which selects clients to participate in training and can dynamically adjust the balance between accuracy and convergence speed with datasets consisting of labeled and unlabeled data.To deal with unlabeled data,the prediction labels strategy predicts labels by encoders.The client selection strategy is to improve accuracy and reduce overhead by selecting clients with higher losses participating in the current round.What is more,the similarity-based clustering strategy uses a new indicator to measure the similarity between clients.Experimental results show that ASCFL has certain advantages in model accuracy and convergence speed over the three state-of-the-art methods with two popular datasets.展开更多
文摘With the development of digital information technologies,robust watermarking framework is taken into real consideration as a challenging issue in the area of image processing,due to the large applicabilities and its utilities in a number of academic and real environments.There are a wide range of solutions to provide image watermarking frameworks,while each one of them is attempted to address an efficient and applicable idea.In reality,the traditional techniques do not have sufficient merit to realize an accurate application.Due to the fact that the main idea behind the approach is organized based on contourlet representation,the only state-of-the-art materials that are investigated along with an integration of the aforementioned contourlet representation in line with watermarking framework are concentrated to be able to propose the novel and skilled technique.In a word,the main process of the proposed robust watermarking framework is organized to deal with both new embedding and de-embedding processes in the area of contourlet transform to generate watermarked image and the corresponding extracted logo image with high accuracy.In fact,the motivation of the approach is that the suggested complexity can be of novelty,which consists of the contourlet representation,the embedding and the corresponding de-embedding modules and the performance monitoring including an analysis of the watermarked image as well as the extracted logo image.There is also a scrambling module that is working in association with levels-directions decomposition in contourlet embedding mechanism,while a decision maker system is designed to deal with the appropriate number of sub-bands to be embedded in the presence of a series of simulated attacks.The required performance is tangibly considered through an integration of the peak signal-to-noise ratio and the structural similarity indices that are related to watermarked image.And the bit error rate and the normal correlation are considered that are related to the extracted logo analysis,as well.Subsequently,the outcomes are fully analyzed to be competitive with respect to the potential techniques in the image colour models including hue or tint in terms of their shade,saturation or amount of gray and their brightness via value or luminance and also hue,saturation and intensity representations,as long as the performance of the whole of channels are concentrated to be presented.The performance monitoring outcomes indicate that the proposed framework is of significance to be verified.
基金Project(20876180) supported by the National Natural Science Foundation of China
文摘The quantitative structure-activity relationship(QSAR) of 2-alkyl-4-(biphenylylmethoxy) pyridine derivatives was studied.Three different alignment methods were used to get the models of the comparative molecular field analysis(CoMFA),the comparative molecular similarity indices analysis(CoMSIA),and the hologram quantitative structure?activity relationship(HQSAR).The statistical results from the established models show believable predictivity based on the cross-validated value(q2>0.5) and the non-validated value(r2>0.9),The analysis on contour maps of CoMFA and CoMSIA models suggests that hydrophobic and hydrogen-bond acceptor fields are important factors that affect the AT1 antagonistic activity of 2-alkyl-4-(biphenylylmethoxy) pyridine derivatives besides the steric and electrostatic fields,The structural modification information from different atom contributions in the HQSAR model is in agreement with that in the 3D-QSAR models.
基金supported by the National Key Research and Development Program of China(No.2019YFC1520904)the National Natural Science Foundation of China(No.61973250).
文摘The influence of non-Independent Identically Distribution(non-IID)data on Federated Learning(FL)has been a serious concern.Clustered Federated Learning(CFL)is an emerging approach for reducing the impact of non-IID data,which employs the client similarity calculated by relevant metrics for clustering.Unfortunately,the existing CFL methods only pursue a single accuracy improvement,but ignore the convergence rate.Additionlly,the designed client selection strategy will affect the clustering results.Finally,traditional semi-supervised learning changes the distribution of data on clients,resulting in higher local costs and undesirable performance.In this paper,we propose a novel CFL method named ASCFL,which selects clients to participate in training and can dynamically adjust the balance between accuracy and convergence speed with datasets consisting of labeled and unlabeled data.To deal with unlabeled data,the prediction labels strategy predicts labels by encoders.The client selection strategy is to improve accuracy and reduce overhead by selecting clients with higher losses participating in the current round.What is more,the similarity-based clustering strategy uses a new indicator to measure the similarity between clients.Experimental results show that ASCFL has certain advantages in model accuracy and convergence speed over the three state-of-the-art methods with two popular datasets.