期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
Sensitivity of Nonlinearity on the ENSO Cycle in a Simple Air-Sea Coupled Model 被引量:1
1
作者 Lin Wan-Tao 《Atmospheric and Oceanic Science Letters》 2009年第1期1-6,共6页
In this paper,the influence of the El NioSouthern Oscillation (ENSO) cycle on the sensitivity of nonlinear factors in the numerical simulation is investigated by conducting numerical experiments in a simple air-sea co... In this paper,the influence of the El NioSouthern Oscillation (ENSO) cycle on the sensitivity of nonlinear factors in the numerical simulation is investigated by conducting numerical experiments in a simple air-sea coupled model for ENSO prediction.Two sets of experiments are conducted in which zonal nonlinear factors,meridional nonlinear factors,or both are incorporated into the governing equations for the atmosphere or ocean.The results suggest that the ENSO cycle is very sensitive to the nonlinear factor of the governing equation for the atmosphere or ocean.Thus,incorporating nonlinearity into air-sea coupled models is of exclusive importance for improving ENSO simulation. 展开更多
关键词 simple air-sea coupled model sensitivity NONLINEARITY ENSO cycle
下载PDF
Contrasts of bimodal tropical instability waves(TIWs)-induced wind stress perturbations in the Pacific Ocean among observations,ocean models,and coupled climate models
2
作者 Kai MA Chuanyu LIU +1 位作者 Junli XU Fan WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期1-23,共23页
The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the ... The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the atmosphere and ocean.However,an overlooked fact by previous studies is that the loosely defined“TIWs”actually consist of two modes,including the Yanai wave-based TIW on the equator(hereafter eTIW)and the Rossby wave-based TIW off the equator(hereafter vTIW).Hence,the individual feedbacks of the wind stress to the bimodal TIWs remain unexplored.In this study,individual coupling relationships are established for both eTIW and v TIW,including the relationship between the TIW-induced SST perturbations and two components of wind stress perturbations,and the relationship between the TIW-induced wind stress perturbation divergence(curl)and the downwind(crosswind)TIW-induced SST gradients.Results show that,due to different distributions of eTIW and vTIW,the coupling strength induced by the eTIW is stronger on the equator,and that by the vTIW is stronger off the equator.The results of any of eTIW and vTIW are higher than those of the loosely defined TIWs.We further investigated how well the coupling relationships remained in several widely recognized oceanic general circulation models and fully coupled climate models.However,the coupling relationships cannot be well represented in most numerical models.Finally,we confirmed that higher resolution usually corresponds to more accurate simulation.Therefore,the coupling models established in this study are complementary to previous research and can be used to refine the oceanic and coupled climate models. 展开更多
关键词 bimodal tropical instability waves mesoscale air-sea interaction coupled models Yanai wave
下载PDF
Simulating Eastern-and Central-Pacific Type ENSO Using a Simple Coupled Model 被引量:3
3
作者 Xianghui FANG Fei ZHENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第6期671-681,共11页
Severe biases exist in state-of-the-art general circulation models(GCMs) in capturing realistic central-Pacific(CP) El Nino structures. At the same time, many observational analyses have emphasized that thermoclin... Severe biases exist in state-of-the-art general circulation models(GCMs) in capturing realistic central-Pacific(CP) El Nino structures. At the same time, many observational analyses have emphasized that thermocline(TH) feedback and zonal advective(ZA) feedback play dominant roles in the development of eastern-Pacific(EP) and CP El Nino-Southern Oscillation(ENSO), respectively. In this work, a simple linear air-sea coupled model, which can accurately depict the strength distribution of the TH and ZA feedbacks in the equatorial Pacific, is used to investigate these two types of El Nino. The results indicate that the model can reproduce the main characteristics of CP ENSO if the TH feedback is switched off and the ZA feedback is retained as the only positive feedback, confirming the dominant role played by ZA feedback in the development of CP ENSO. Further experiments indicate that, through a simple nonlinear control approach, many ENSO characteristics,including the existence of both CP and EP El Nino and the asymmetries between El Nino and La Nina, can be successfully captured using the simple linear air-sea coupled model. These analyses indicate that an accurate depiction of the climatological sea surface temperature distribution and the related ZA feedback, which are the subject of severe biases in GCMs, is very important in simulating a realistic CP El Nino. 展开更多
关键词 central-Pacific El Nino eastern-Pacific El Nino simple coupled model simulation asymmetry
下载PDF
A Simple Quasi-Geostrophic Coupled Ocean-Atmosphere Model
4
作者 刘式适 何安国 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1991年第3期257-271,共15页
The quasi-geostrophic atmospheric and oceanic equations of momentum and thermodynamics with dissipation factors are used to create a simple coupled ocean-atmosphere model describing the large-scale shallow-water motio... The quasi-geostrophic atmospheric and oceanic equations of momentum and thermodynamics with dissipation factors are used to create a simple coupled ocean-atmosphere model describing the large-scale shallow-water motion. We discuss the ocean-atmosphere coupling effect in mid-high and low latitudes separately and analyze characteristics of which the oscillatory periods of coupled low-frequency modes (ocean mode) vary with the coupling frequency and latitudinal number. This can interpret the correlation between low-frequency oscillation and ocean-atmosphere interaction. Then from the dispersion curves of atmosphere and ocean, we reveal effect of the coupling strength on the propagation of Rossby waves. The convection mechanism between the two modes is also discussed in view of the slowly varying wave train.The results show that Newtonian cooling and Rayleigh friction play a stable rule in oceanic Rossby waves, the period of coupled low-frequency mode grows with the increment of the coupling frequency. The larger the latitudinal number is, the more rapidly it grows. When the coupling frequency tends to critical value, the oceanic Rossby waves become static. When the ocean-atmosphere coupling strength grows to some degree, the propagation of oceanic Rossby waves will become opposite to its original direction. One part of the oceanic Rossby waves is converted into atmospheric Rossby waves, the energy conversion coefficient is also solved out. 展开更多
关键词 MODE A simple Quasi-Geostrophic coupled Ocean-Atmosphere model
下载PDF
Impact of Perturbation Schemes on the Ensemble Prediction in a Coupled Lorenz Model 被引量:1
5
作者 Qian ZOU Quanjia ZHONG +4 位作者 Jiangyu MAO Ruiqiang DING Deyu LU Jianping LI Xuan LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第3期501-513,共13页
Based on a simple coupled Lorenz model,we investigate how to assess a suitable initial perturbation scheme for ensemble forecasting in a multiscale system involving slow dynamics and fast dynamics.Four initial perturb... Based on a simple coupled Lorenz model,we investigate how to assess a suitable initial perturbation scheme for ensemble forecasting in a multiscale system involving slow dynamics and fast dynamics.Four initial perturbation approaches are used in the ensemble forecasting experiments:the random perturbation(RP),the bred vector(BV),the ensemble transform Kalman filter(ETKF),and the nonlinear local Lyapunov vector(NLLV)methods.Results show that,regardless of the method used,the ensemble averages behave indistinguishably from the control forecasts during the first few time steps.Due to different error growth in different time-scale systems,the ensemble averages perform better than the control forecast after very short lead times in a fast subsystem but after a relatively long period of time in a slow subsystem.Due to the coupled dynamic processes,the addition of perturbations to fast variables or to slow variables can contribute to an improvement in the forecasting skill for fast variables and slow variables.Regarding the initial perturbation approaches,the NLLVs show higher forecasting skill than the BVs or RPs overall.The NLLVs and ETKFs had nearly equivalent prediction skill,but NLLVs performed best by a narrow margin.In particular,when adding perturbations to slow variables,the independent perturbations(NLLVs and ETKFs)perform much better in ensemble prediction.These results are simply implied in a real coupled air–sea model.For the prediction of oceanic variables,using independent perturbations(NLLVs)and adding perturbations to oceanic variables are expected to result in better performance in the ensemble prediction. 展开更多
关键词 ensemble prediction nonlinear local Lyapunov vector(NLLV) ensemble transform Kalman filter(ETKF) coupled air-sea models
下载PDF
A Regional Air-Sea Coupled Model and Its Application over East Asia in the Summer of 2000 被引量:8
6
作者 房永杰 张耀存 +1 位作者 汤剑平 任雪娟 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第3期583-593,共11页
A regional air-sea coupled model, comprising the Regional Integrated Environment Model System (RIEMS) and the Princeton Ocean Model (POM) was developed to simulate summer climate features over East Asia in 2000. T... A regional air-sea coupled model, comprising the Regional Integrated Environment Model System (RIEMS) and the Princeton Ocean Model (POM) was developed to simulate summer climate features over East Asia in 2000. The sensitivity of the model's behavior to the coupling time interval (CTI), the causes of the sea surface temperature (SST) biases, and the role of air-sea interaction in the simulation of precipitation over China are investigated. Results show that the coupled model can basically produce the spatial pattern of SST, precipitation, and surface air temperature (SAT) with five different CTIs respectively. Also, using a CTI of 3, 6 or 12 hours tended to produce more successful simulations than if using 1 and 24 hours. Further analysis indicates that both a higher and lower coupling frequency result in larger model biases in air-sea heat flux exchanges, which might be responsible for the sensitivity of the coupled model's behavior to the CTI. Sensitivity experiments indicate that SST biases between the coupled and uncoupled POM occurring over the China coastal waters were due to the mismatch of the surface heat fluxes produced by the RIEMS with those required by the POM. In the coupled run, the air-sea feedbacks reduced the biases in surface heat fluxes, compared with the uncoupled RIEMS, consequently resulted in changes in thermal contrast over land and sea and led to a precipitation increase over South China and a decrease over North China. These results agree well observations in the summer of 2000. 展开更多
关键词 REGIONAL air-sea coupled model coupling time interval air-sea interactions East Asian climate
下载PDF
SIMULATION OF SUMMER CLIMATE IN CHINA DURING 1997 AND 1998 USING A REGIONAL AIR-SEA COUPLED MODEL 被引量:1
7
作者 姚素香 黄乾 张耀存 《Journal of Tropical Meteorology》 SCIE 2013年第1期80-86,共7页
Using the regional air-sea coupled climate model RegCM3-POM,a series of numerical experiments are performed to simulate the summer climate in 1997 and 1998 with different coupling time steps.The results show that the ... Using the regional air-sea coupled climate model RegCM3-POM,a series of numerical experiments are performed to simulate the summer climate in 1997 and 1998 with different coupling time steps.The results show that the coupled model has good performance on the simulation of the summer sea surface temperature(SST) in 1997 and 1998,and the simulation results of CPL1(with the coupling time step at 1 hour) are similar to those of CPL6(with the coupling time step at 6 hours).The coupled model can well simulate SST differences between 1997 and 1998.As for the simulation of the drought in 1997 and the flood in 1998,the results of CPL6 are more accurate.The coupled model can well simulate the drought in 1997 over North China,and compared with the results of the atmosphere model RegCM3,the simulation ability of the coupled model is improved.The coupling model has better ability in the simulation of the circulation in the middle and low levels,and the water vapor transportation in the coupling model is reasonable in both 1997 and 1998.RegCM3(an uncoupled model) cannot correctly simulate the transportation path differences between 1997 and 1998,but the coupled model can simulate the differences well. 展开更多
关键词 REGIONAL air-sea coupled model PRECIPITATION NUMERICAL SIMULATION
下载PDF
Kuroshio intrusion in the Luzon Strait in an eddy-resolving ocean model and air-sea coupled model 被引量:1
8
作者 Qian Yang Hailong Liu +1 位作者 Pengfei Lin Yiwen Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第11期52-68,共17页
The Kuroshio intrusion in a quasi-global eddy-resolving model(LICOMH)and a fully air-sea coupled mode(LICOMHC)was evaluated against observations.We found that the Kuroshio intrusion was exaggerated in the former,while... The Kuroshio intrusion in a quasi-global eddy-resolving model(LICOMH)and a fully air-sea coupled mode(LICOMHC)was evaluated against observations.We found that the Kuroshio intrusion was exaggerated in the former,while biases were significantly attenuated in the latter.Luzon Strait transport(LST)in winter was reduced from–8.8×106 m3/s in LICOMH to–6.0×106 m3/s in LICOMHC.Further analysis showed that different LST values could be explained by different large-scale and local surface wind stresses and the eddies east to the Luzon Strait as well.The relatively stronger cyclonic eddies in LICOMH northeast of the Luzon Island led to weak Kuroshio transport and strong intrusion through the Luzon Strait.The summed transport of all three factors was approximately 2.0×106 m3/s,which was comparable with the difference in LST between the two experiments.The EKE budget showed that strong EKE transport and the baroclinic transformation term led to strong cyclonic eddies east of the Kuroshio in LICOMH,while surface winds contributed little to the differences in the eddies. 展开更多
关键词 Kuroshio intrusion South China Sea eddy-resolving model air-sea coupled model
下载PDF
A New Ocean Mixed-Layer Model Coupled into WRF 被引量:4
9
作者 WANG Zi-Qian DUAN An-Min 《Atmospheric and Oceanic Science Letters》 2012年第3期170-175,共6页
A new mesoscale air-sea coupled model (WRF- OMLM-Noh) was constructed based on the Weather Research and Forecasting (WRF) model and an improved Mellor-Yamada ocean mixed-layer model from Noh and Kim (OMLM-Noh). Throug... A new mesoscale air-sea coupled model (WRF- OMLM-Noh) was constructed based on the Weather Research and Forecasting (WRF) model and an improved Mellor-Yamada ocean mixed-layer model from Noh and Kim (OMLM-Noh). Through off-line tests and a simulation of a real typhoon, the authors compared the performance of the WRF-OMLM-Noh with another existing ocean mixed-layer coupled model (WRF-OMLM-Pollard). In the off-line tests with Tropical Ocean Global Atmosphere Program's Coupled Ocean Atmosphere Response Experiment (TOGA-COARE) observational data, the results show that OMLM-Noh is better able to simulate sea surface temperature (SST) variational trends than OMLM -Pollard. Moreover, OMLM-Noh can sufficiently reproduce the diurnal cycle of SST. Regarding the typhoon case study, SST cooling due to wind-driven ocean mixing is underestimated in WRF-OMLM-Pollard, which artificially increases the intensity of the typhoon due to more simulated air-sea heat fluxes. Compared to the WRF- OMLM-Pollard, the performance of WRF-OMLM-Noh is superior in terms of both the spatial distribution and temporal variation of SST and air-sea heat fluxes. 展开更多
关键词 WRF-OMLM-Noh sea surface temperature ocean mixed layer air-sea coupled model
下载PDF
A Numerical Study of a TOGA-COARE Squall-Line Using a Coupled Mesoscale Atmosphere-Ocean Model 被引量:1
10
作者 Sethu RAMAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第5期708-716,共9页
An atmosphere-ocean coupled mesoscale modeling system is developed and used to investigate the interactions between a squall line and the upper ocean observed over the western Paci?c warm pool during the Tropical Oc... An atmosphere-ocean coupled mesoscale modeling system is developed and used to investigate the interactions between a squall line and the upper ocean observed over the western Paci?c warm pool during the Tropical Ocean/Global Atmosphere Coupled Ocean and Atmosphere Response Experiment (TOGA-COARE). The modeling system is developed by coupling the Advanced Regional Prediction Sys- tem (ARPS) to the Princeton Ocean Model (POM) through precipitation and two-way exchanges of mo- mentum, heat, and moisture across the air-sea interface. The results indicate that the interaction between the squall-line and the upper ocean produced noticeable di?erences in the sensible and latent heat ?uxes, as compared to the uncoupled cases. Precipitation, which is often ignored in air-sea heat ?ux estimates, played a major role in the coupling between the mesoscale convective system and the ocean. Precipitation a?ected the air-sea interaction through both freshwater ?ux and sensible heat ?ux. The former led to the formation of a thin stable ocean layer underneath and behind the precipitating atmospheric convection. The presence of this stable layer resulted in a more signi?cant convection-induced sea surface temperature (SST) change in and behind the precipitation zone. However, convection-induced SST changes do not seem to play an important role in the intsensi?cation of the existing convective system that resulted in the SST change, as the convection quickly moved away from the region of original SST response. 展开更多
关键词 air-sea interaction mesoscale modeling squall line coupled ocean-atmosphere modeling
下载PDF
Simulating Tropical Instability Waves in the Equatorial Eastern Pacific with a Coupled General Circulation Model
11
作者 陈鲜艳 Masahide KIMOTO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第5期1015-1026,共12页
Satellite observations of SSTs have revealed the existence of unstable waves in the equatorial eastern Pacific and Atlantic oceans. These waves have a 20-40-day periodicity with westward phase speeds of 0.4-0.6 m s^-1... Satellite observations of SSTs have revealed the existence of unstable waves in the equatorial eastern Pacific and Atlantic oceans. These waves have a 20-40-day periodicity with westward phase speeds of 0.4-0.6 m s^-1 and wavelengths of 1000-2000 km during boreal summer and fall. They are generally called tropical instability waves (TIWs). This study investigates TIWs simulated by a high-resolution coupled atmosphere-ocean general circulation model (AOGCM). The horizontal resolution of the model is 120 km in the atmosphere, and 30 km longitude by 20 km latitude in the ocean. Model simulations show good agreement with the observed main features associated with TIWs. The results of energetics analysis reveal that barotropic energy conversion is responsible for providing the main energy source for TIWs by extracting energy from the meridional shear of the climatological-mean equatorial currents in the mixed layer. This deeper and northward-extended wave activity appears to gain its energy through baroclinic conversion via buoyancy work, which further contributes to the asymmetric distribution of TIWs. It is estimated that the strong cooling effect induced by equatorial upwelling is partially (-30%-40%) offset by the equatorward heat flux due to TIWs in the eastern tropical Pacific during the seasons when TIWs are active. The atmospheric mixed layer just above the sea surface responds to the waves with enhanced or reduced vertical mixing. Furthermore, the changes in turbulent mixing feed back to sea surface evaporation, favoring the westward propagation of TIWs. The atmosphere to the south of the Equator also responds to TIWs in a similar way, although TIWs are much weaker south of the Equator. 展开更多
关键词 tropical instability waves equatorial eastern Pacific coupled general circulation model heatflux air-sea interaction
下载PDF
A simple approach for the estimation of CO_2 penetration depth into a caprock layer 被引量:4
12
作者 J.G.Wang Yang Ju +1 位作者 Feng Gao Jia Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第1期75-86,共12页
Caprock is a water-saturated formation with a sufficient entry capillary pressure to prevent the upward migration of a buoyant fluid. When the entry capillary pressure of caprock is smaller than the pressure exerted b... Caprock is a water-saturated formation with a sufficient entry capillary pressure to prevent the upward migration of a buoyant fluid. When the entry capillary pressure of caprock is smaller than the pressure exerted by the buoyant CO2plume, CO2gradually penetrates into the caprock. The CO2penetration depth into a caprock layer can be used to measure the caprock sealing efficiency and becomes the key issue to the assessment of caprock sealing efficiency. On the other hand, our numerical simulations on a caprock layer have revealed that a square root law for time and pore pressure exists for the CO2penetration into the caprock layer. Based on this finding, this study proposes a simple approach to estimate the CO2penetration depth into a caprock layer. This simple approach is initially developed to consider the speed of CO2invading front. It explicitly expresses the penetration depth with pressuring time, pressure difference and pressure magnitude. This simple approach is then used to fit three sets of experimental data and good fittings are observed regardless of pressures, strengths of porous media, and pore fluids(water,hydrochloric acid, and carbonic acid). Finally, theoretical analyses are conducted to explore those factors affecting CO2penetration depth. The effects of capillary pressure, gas sorption induced swelling, and fluid property are then included in this simple approach. These results show that this simple approach can predict the penetration depth into a caprock layer with sufficient accuracy, even if complicated interactions in penetration process are not explicitly expressed in this simple formula. 展开更多
关键词 Fracture-matrix system Fully coupled model Two-phase flow model Square root law simple approach CO_2 penetration depth Caprock sealing efficiency
下载PDF
Global air-sea CO_(2) exchange fl ux since 1980s: results from CMIP6 Earth System Models 被引量:1
13
作者 Baoxiao QU Jinming SONG +3 位作者 Xuegang LI Huamao YUAN Kun ZHANG Suqing XU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2022年第4期1417-1436,共20页
The ocean could profoundly modulate the ever-increasing atmospheric CO_(2) by air-sea CO_(2) exchange process,which is also able to cause signifi cant changes of physical and biogeochemical properties in return.In thi... The ocean could profoundly modulate the ever-increasing atmospheric CO_(2) by air-sea CO_(2) exchange process,which is also able to cause signifi cant changes of physical and biogeochemical properties in return.In this study,we assessed the long-term average and spatial-temporal variability of global air-sea CO_(2) exchange fl ux(F CO_(2))since 1980s basing on the results of 18 Coupled Model Intercomparison Project Phase 6(CMIP6)Earth System Models(ESMs).Our fi ndings indicate that the CMIP6 ESMs simulated global CO_(2) sink in recent three decades ranges from 1.80 to 2.24 Pg C/a,which is coincidence with the results of cotemporaneous observations.What’s more,the CMIP6 ESMs consistently show that the global oceanic CO_(2) sink has gradually intensifi ed since 1980s as well as the observations.This study confi rms the simulated F CO_(2) could reach agreements with the observations in the aspect of primary climatological characteristics,however,the simulation skills of CIMP6 ESMs in diverse open-sea biomes are unevenness.None of the 18 CMIP6 ESMs could reproduce the observed F CO_(2) increasement in the central-eastern tropical Pacifi c and the midlatitude Southern Ocean.Defi ciencies of some CMIP6 ESMs in reproducing the atmospheric pressure systems of the Southern Hemisphere and the El Niño-Southern Oscillation(ENSO)mode of the tropical Pacifi c are probably the major causes. 展开更多
关键词 air-sea CO_(2)fl ux coupled model Intercomparison Project Phase 6(CMIP6) Earth System model(ESM) long-term average spatial-temporal variability
下载PDF
Recent advances in regional air-sea coupled models 被引量:6
14
作者 PENG ShiQiu LIU DuanLing +1 位作者 SUN ZhaoBo LI YiNeng 《Science China Earth Sciences》 SCIE EI CAS 2012年第9期1391-1405,共15页
In this paper,we first briefly review the history of air-sea coupled models,and then introduce the current status and recent advances of regional air-sea coupled models.In particular,we discuss the core technical and ... In this paper,we first briefly review the history of air-sea coupled models,and then introduce the current status and recent advances of regional air-sea coupled models.In particular,we discuss the core technical and scientific issues involved in the development of regional coupled models,including the coupling technique,lateral boundary conditions,the coupling with sea waves(ices),and data assimilation.Furthermore,we introduce the application of regional coupled models in numerical simulation and dynamical downscaling.Finally,we discuss the existing problems and future directions in the development of regional air-sea coupled models. 展开更多
关键词 regional air-sea coupled models lateral boundary conditions data assimilation couplER dynamical downscaling
原文传递
DEVELOPMENT OF A COUPLED REGIONAL AIR-SEA MODEL AND ITS NUMERICAL SIMULATION FOR SUMMER MONSOON IN 1998 被引量:5
15
作者 REN Xuejuan(任雪娟) +1 位作者 QIAN Yongfu(钱永甫) 《Acta meteorologica Sinica》 SCIE 2001年第4期385-396,共12页
A coupled regional air-sea model is developed by using the regional climate model (P-σ RCM) and the regional ocean model (POM),which is used to simulate East Asian monsoon and oceanic elements in East Asian coastal w... A coupled regional air-sea model is developed by using the regional climate model (P-σ RCM) and the regional ocean model (POM),which is used to simulate East Asian monsoon and oceanic elements in East Asian coastal waters.The simulated surface layer oceanic elements are basically consistent with the reality and can reflect the interaction between the monsoon and the surface layer currents.The great difference with the reality is “cold drift” of the simulated surface temperature.The coupled model has certain ability to simulate the atmosphere geopotential height fields,precipitation and low-level southwest wind from May to August in 1998.It can display the process of summer monsoon onset during the third dekad of May and the evolution features after the onset.The differences between the simulation results of the coupled model and that of the single P-a RCM are shown mainly in the low-level atmosphere and the model internal regions. 展开更多
关键词 coupled regional air-sea model summer monsoon air-sea interaction
原文传递
Numerical Simulation of Changes in Tropical Cyclone Intensity Using a Coupled Air-Sea Model 被引量:4
16
作者 端义宏 伍荣生 +1 位作者 于润玲 梁旭东 《Acta meteorologica Sinica》 SCIE 2013年第5期658-672,共15页
A coupled air-sea model for tropical cyclones (TCs) is constructed by coupling the Pennsylvania State University/National Center for Atmospheric Research mesoscale model (MM5) with the Princeton Ocean Model.Four n... A coupled air-sea model for tropical cyclones (TCs) is constructed by coupling the Pennsylvania State University/National Center for Atmospheric Research mesoscale model (MM5) with the Princeton Ocean Model.Four numerical simulations of tropical cyclone development have been conducted using different configurations of the coupled model on the f-plane.When coupled processes are excluded,a weak initial vortex spins up into a mature symmetric TC that strongly resembles those observed and simulated in prior research.The coupled model reproduces the reduction in sea temperature induced by the TC reasonably well,as well as changes in the minimum central pressure of the TC that result from negative atmosphere-ocean feedbacks.Asymmetric structures are successfully simulated under conditions of uniform environmental flow.The coupled ocean-atmosphere model is suitable for simulating air-sea interactions under TC conditions.The effects of the ocean on the track of the TC and changes in its intensity under uniform environmental flow are also investigated.TC intensity responds nonlinearly to sea surface temperature (SST).The TC intensification rate becomes smaller once the SST exceeds a certain threshold.Oceanic stratification also influences TC intensity,with stronger stratification responsible for a larger decrease in intensity.The value of oceanic enthalpy is small when the ocean is weakly stratified and large when the ocean is strongly stratified,demonstrating that the oceanic influence on TC intensity results not only from SST distributions but also from stratification.Air-sea interaction has only a slight influence on TC movement in this model. 展开更多
关键词 tropical cyclone coupled air-sea model ocean-atmosphere interaction
原文传递
Simulation of China Summer Precipitation Using a Regional Air-Sea Coupled Model 被引量:3
17
作者 姚素香 张耀存 《Acta meteorologica Sinica》 SCIE 2010年第2期203-214,共12页
A regional air-sea coupled model based on the regional climate model(RegCM3) and the regional oceanic model POM(Princeton Ocean Model) is developed and a series of experiments are performed to verify the ability o... A regional air-sea coupled model based on the regional climate model(RegCM3) and the regional oceanic model POM(Princeton Ocean Model) is developed and a series of experiments are performed to verify the ability of the coupled model in simulating the summer precipitation over China from 1963 to 2002.The results show that the space correlation coefficients between the GISST(Global Ice and Sea Surface Temperature) data and the simulated SST by RegCM3-POM exceed 0.9.Compared with the uncoupled experiments,the coupled model RegCM3-POM has a better performance in simulating the mean summer(June to August) precipitation over China,and the distribution of the rainband in the coupled model is more accurate.The improvement of the rainfall simulation is significant over the Yangtze River Valley and in South China.The rainbelt intraseasonal evolution over eastern China in summer indicates that the simulation ability of RegCM3-POM is improved in comparison with the uncoupled model.The interannual summer rainfall variation over eastern China simulated by RegCM3-POM is in accordance with observation,while the spatial pattern of the interannual summer rainfall variation in the uncoupled model is inaccurate.The simulated correlation coefficient between the summer rainfall in the uncoupled model RegCM3 and observation is 0.30 over the Yangtze River Valley and 0.29 in South China.The coefficient between the rainfall in the coupled RegCM3-POM and observation is 0.48 over the Yangtze River Valley and 0.61 in South China.The RegCM3-POM has successfully simulated the correlation coefficients between summer rainfall in the Yangtze River Valley and SST anomalies of the Bay of Bengal,South China Sea,and the Kuroshio area,whereas the uncoupled model RegCM3 fails to reproduce this relationship.The study further shows that the monsoon circulation and the path of the moisture transport flux simulated by RegCM3-POM are in good agreement with the NCEP/NCAR data. 展开更多
关键词 regional air-sea coupled model PRECIPITATION moisture transport sea surface temperature
原文传递
Study of Mode Coupling on Coaxial Resonators
18
作者 Rui Liu Hong-Fu Li 《Journal of Electronic Science and Technology》 CAS 2011年第3期221-226,共6页
A study of mode coupling phenomenon of coaxial resonators has been conducted with theories. Through establishing the source-free transmission line equation, boundary conditions of the coaxial resonators with a corruga... A study of mode coupling phenomenon of coaxial resonators has been conducted with theories. Through establishing the source-free transmission line equation, boundary conditions of the coaxial resonators with a corrugated inner conductor are analyzed. In the end, calculations are performed in a wide range of corrugation parameters for the resonator of the Karlsruhe Institute of Technology (KIT) relevant coaxial gyrotron. 展开更多
关键词 Index Terms--Coaxial resonators GYROTRON mode coupling simple surface impedance model.
下载PDF
Mesoscale wind stress-SST coupling induced feedback to the ocean in the western coast of South America
19
作者 Chaoran CUI Rong-Hua ZHANG +1 位作者 Yanzhou WEI Hongna WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2021年第3期785-799,共15页
The feedback induced by mesoscale wind stress-SST coupling to the ocean in the western coast of South America was studied using the Regional Ocean Modeling System(ROMS).To represent the feedback,an empirical mesoscale... The feedback induced by mesoscale wind stress-SST coupling to the ocean in the western coast of South America was studied using the Regional Ocean Modeling System(ROMS).To represent the feedback,an empirical mesoscale wind stress perturbation model was constructed from satellite observations,and was incorporated into the ocean model.Comparing two experiments with and without the mesoscale wind stress-SST coupling,it was found that SST in the mesoscale coupling experiment was reduced in the western coast of South America,with the maximum values of 0.5℃in the Peru Sea and 0.7℃in the Chile Sea.A mixed layer heat budget analysis indicates that horizontal advection is the main term that explains the reduction in SST.Specifically,the feedback induced by mesoscale wind stress-SST coupling to the ocean can enhance vertical velocity in the nearshore area through the Ekman pumping,which brings subsurface cold water to the sea surface.These results indicate that the feedback due to the mesoscale wind stress-SST coupling to the ocean has the potential for reducing the warm SST bias often seen in the large-scale climate model simulations in this region. 展开更多
关键词 mesoscale air-sea coupling western coast of South America ocean model simulations cooling effect warm bias
下载PDF
Air-sea fluxes of heat and momentum over the Yellow Sea during cold air outbreaks
20
作者 WANG Jian-hong SHI Jia-lin +3 位作者 LIANG Xiang-san PENG Mo LI Zhi-jin MIAO Chun-sheng 《Marine Science Bulletin》 CAS 2019年第2期16-35,共20页
The impact of sea surface waves on air-sea fluxes of heat and momentum over the Yellow Sea caused by cold fronts during cold air outbreak(CAO)events is investigated through numerical experiments with a FVCOM-SWAVE(Fin... The impact of sea surface waves on air-sea fluxes of heat and momentum over the Yellow Sea caused by cold fronts during cold air outbreak(CAO)events is investigated through numerical experiments with a FVCOM-SWAVE(Finite-Volume Coastal Ocean Model-Surface WAVE)wave-current coupled model.Two typical types of cold fronts,i.e.,those respectively from the north and from the west,are simulated and compared to each other and with monthly mean.During cold seasons,currents in the Yellow Sea are weaker than that during warm seasons.As a result,waves show a more prominent impact.The numerical simulations suggested that both the heat and momentum fluxes are significantly enhanced during CAO events;and they could be a few times larger than the monthly average of a five-year mean.The enhancement is highly sensitive to the features of CAOs.Specifically,it depends on the cold front orientation,intensity and evolution.One mechanism that strengthens the two fluxes is via sea waves.For the CAOs that are studied,an increase in sea wave height by 50%can double the maximal momentum flux,and cause an increase in heat flux by 10-160 W/m^2. 展开更多
关键词 Yellow Sea air-sea fluxes of heat and momentum cold air outbreak sea surface wave FVCOM-SWAVE coupled model
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部