In this paper, the problem of minimizing a convex function subject to general linear constraints is considered. An algorithm which is an extension of the method described in [4] is presented. And a new dual simplex pr...In this paper, the problem of minimizing a convex function subject to general linear constraints is considered. An algorithm which is an extension of the method described in [4] is presented. And a new dual simplex procedure with lexicographic scheme is proposed to deal with the degenerative case in the sense that the gradients of active constraints at the iteration point are dependent. Unlike other methods, the new algorithm possesses the following important property that, at any iteration point generated by the algorithm, one can choose a set of the most suitable basis and from it one can drop all constraints which can be relaxed, not only one constraint once. This property will be helpful in decreasing the computation amount of the algorithm. The global convergence and superlinear convergence of this algorithm are proved,without any assumption of linear independence of the gradients of active constraints.展开更多
Chemical process optimization can be described as large-scale nonlinear constrained minimization. The modified augmented Lagrange multiplier methods (MALMM) for large-scale nonlinear constrained minimization are studi...Chemical process optimization can be described as large-scale nonlinear constrained minimization. The modified augmented Lagrange multiplier methods (MALMM) for large-scale nonlinear constrained minimization are studied in this paper. The Lagrange function contains the penalty terms on equality and inequality constraints and the methods can be applied to solve a series of bound constrained sub-problems instead of a series of unconstrained sub-problems. The steps of the methods are examined in full detail. Numerical experiments are made for a variety of problems, from small to very large-scale, which show the stability and effectiveness of the methods in large-scale problems.展开更多
文摘In this paper, the problem of minimizing a convex function subject to general linear constraints is considered. An algorithm which is an extension of the method described in [4] is presented. And a new dual simplex procedure with lexicographic scheme is proposed to deal with the degenerative case in the sense that the gradients of active constraints at the iteration point are dependent. Unlike other methods, the new algorithm possesses the following important property that, at any iteration point generated by the algorithm, one can choose a set of the most suitable basis and from it one can drop all constraints which can be relaxed, not only one constraint once. This property will be helpful in decreasing the computation amount of the algorithm. The global convergence and superlinear convergence of this algorithm are proved,without any assumption of linear independence of the gradients of active constraints.
文摘Chemical process optimization can be described as large-scale nonlinear constrained minimization. The modified augmented Lagrange multiplier methods (MALMM) for large-scale nonlinear constrained minimization are studied in this paper. The Lagrange function contains the penalty terms on equality and inequality constraints and the methods can be applied to solve a series of bound constrained sub-problems instead of a series of unconstrained sub-problems. The steps of the methods are examined in full detail. Numerical experiments are made for a variety of problems, from small to very large-scale, which show the stability and effectiveness of the methods in large-scale problems.