期刊文献+
共找到582篇文章
< 1 2 30 >
每页显示 20 50 100
Hybrid particle swarm optimization with chaotic search for solving integer and mixed integer programming problems 被引量:20
1
作者 谭跃 谭冠政 邓曙光 《Journal of Central South University》 SCIE EI CAS 2014年第7期2731-2742,共12页
A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.... A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions. 展开更多
关键词 particle swarm optimization chaotic search integer programming problem mixed integer programming problem
下载PDF
Support vector machine forecasting method improved by chaotic particle swarm optimization and its application 被引量:11
2
作者 李彦斌 张宁 李存斌 《Journal of Central South University》 SCIE EI CAS 2009年第3期478-481,共4页
By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) for... By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects. 展开更多
关键词 chaotic searching particle swarm optimization (PSO) support vector machine (SVM) short term load forecast
下载PDF
Hybrid particle swarm optimization with differential evolution and chaotic local search to solve reliability-redundancy allocation problems 被引量:5
3
作者 谭跃 谭冠政 邓曙光 《Journal of Central South University》 SCIE EI CAS 2013年第6期1572-1581,共10页
In order to solve reliability-redundancy allocation problems more effectively, a new hybrid algorithm named CDEPSO is proposed in this work, which combines particle swarm optimization (PSO) with differential evoluti... In order to solve reliability-redundancy allocation problems more effectively, a new hybrid algorithm named CDEPSO is proposed in this work, which combines particle swarm optimization (PSO) with differential evolution (DE) and a new chaotic local search. In the CDEPSO algorithm, DE provides its best solution to PSO if the best solution obtained by DE is better than that by PSO, while the best solution in the PSO is performed by chaotic local search. To investigate the performance of CDEPSO, four typical reliability-redundancy allocation problems were solved and the results indicate that the convergence speed and robustness of CDEPSO is better than those of PSO and CPSO (a hybrid algorithm which only combines PSO with chaotic local search). And, compared with the other six improved meta-heuristics, CDEPSO also exhibits more robust performance. In addition, a new performance was proposed to more fairly compare CDEPSO with the same six improved recta-heuristics, and CDEPSO algorithm is the best in solving these problems. 展开更多
关键词 particle swarm optimization differential evolution chaotic local search reliability-redundancy allocation
下载PDF
A Chaotic Local Search-Based Particle Swarm Optimizer for Large-Scale Complex Wind Farm Layout Optimization 被引量:3
4
作者 Zhenyu Lei Shangce Gao +2 位作者 Zhiming Zhang Haichuan Yang Haotian Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第5期1168-1180,共13页
Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that red... Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that reduces the power outputs of wind turbines located in downstream.Wind farm layout optimization(WFLO)aims to reduce the wake effect for maximizing the power outputs of the wind farm.Nevertheless,the wake effect among wind turbines increases significantly as the number of wind turbines increases in the wind farm,which severely affect power conversion efficiency.Conventional heuristic algorithms suffer from issues of low solution quality and local optimum for large-scale WFLO under complex wind scenarios.Thus,a chaotic local search-based genetic learning particle swarm optimizer(CGPSO)is proposed to optimize large-scale WFLO problems.CGPSO is tested on four larger-scale wind farms under four complex wind scenarios and compares with eight state-of-the-art algorithms.The experiment results indicate that CGPSO significantly outperforms its competitors in terms of performance,stability,and robustness.To be specific,a success and failure memories-based selection is proposed to choose a chaotic map for chaotic search local.It improves the solution quality.The parameter and search pattern of chaotic local search are also analyzed for WFLO problems. 展开更多
关键词 chaotic local search(CLS) evolutionary computation genetic learning particle swarm optimization(PSO) wake effect wind farm layout optimization(WFLO)
下载PDF
Image Thresholding Using Two-Dimensional Tsallis Cross Entropy Based on Either Chaotic Particle Swarm Optimization or Decomposition
5
作者 吴一全 张晓杰 吴诗婳 《China Communications》 SCIE CSCD 2011年第7期111-121,共11页
The segmentation effect of Tsallis entropy method is superior to that of Shannon entropy method, and the computation speed of two-dimensional Shannon cross entropy method can be further improved by optimization. The e... The segmentation effect of Tsallis entropy method is superior to that of Shannon entropy method, and the computation speed of two-dimensional Shannon cross entropy method can be further improved by optimization. The existing two-dimensional Tsallis cross entropy method is not the strict two-dimensional extension. Thus two new methods of image thresholding using two-dimensional Tsallis cross entropy based on either Chaotic Particle Swarm Optimization (CPSO) or decomposition are proposed. The former uses CPSO to find the optimal threshold. The recursive algorithm is adopted to avoid the repetitive computation of fitness function in iterative procedure. The computing speed is improved greatly. The latter converts the two-dimensional computation into two one-dimensional spaces, which makes the computational complexity further reduced from O(L2) to O(L). The experimental results show that, compared with the proposed recently two-dimensional Shannon or Tsallis cross entropy method, the two new methods can achieve superior segmentation results and reduce running time greatly. 展开更多
关键词 signal and information processing image segmentation threshold selection two-dimensional Tsallis cross entropy chaotic particle swarm optimization DECOMPOSITION
下载PDF
Particle Swarm Optimization Algorithm Based on Chaotic Sequences and Dynamic Self-Adaptive Strategy
6
作者 Mengshan Li Liang Liu +4 位作者 Genqin Sun Keming Su Huaijin Zhang Bingsheng Chen Yan Wu 《Journal of Computer and Communications》 2017年第12期13-23,共11页
To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The se... To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The self-adaptive inertia weight factor was used to accelerate the converging speed, and chaotic sequences were used to tune the acceleration coefficients for the balance between exploration and exploitation. The performance of the proposed algorithm was tested on four classical multi-objective optimization functions by comparing with the non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results verified the effectiveness of the algorithm, which improved the premature convergence problem with faster convergence rate and strong ability to jump out of local optimum. 展开更多
关键词 particle swarm Algorithm chaotic SEQUENCES SELF-ADAPTIVE STRATEGY MULTI-OBJECTIVE optimization
下载PDF
CPSO: Chaotic Particle Swarm Optimization for Cluster Analysis
7
作者 Jiaji Wang 《Journal of Artificial Intelligence and Technology》 2023年第2期46-52,共7页
Background:To solve the cluster analysis better,we propose a new method based on the chaotic particle swarm optimization(CPSO)algorithm.Methods:In order to enhance the performance in clustering,we propose a novel meth... Background:To solve the cluster analysis better,we propose a new method based on the chaotic particle swarm optimization(CPSO)algorithm.Methods:In order to enhance the performance in clustering,we propose a novel method based on CPSO.We first evaluate the clustering performance of this model using the variance ratio criterion(VRC)as the evaluation metric.The effectiveness of the CPSO algorithm is compared with that of the traditional particle swarm optimization(PSO)algorithm.The CPSO aims to improve the VRC value while avoiding local optimal solutions.The simulated dataset is set at three levels of overlapping:non-overlapping,partial overlapping,and severe overlapping.Finally,we compare CPSO with two other methods.Results:By observing the comparative results,our proposed CPSO method performs outstandingly.In the conditions of non-overlapping,partial overlapping,and severe overlapping,our method has the best VRC values of 1683.2,620.5,and 275.6,respectively.The mean VRC values in these three cases are 1683.2,617.8,and 222.6.Conclusion:The CPSO performed better than other methods for cluster analysis problems.CPSO is effective for cluster analysis. 展开更多
关键词 cluster analysis chaotic particle swarm optimization variance ratio criterion
下载PDF
Design of Radial Basis Function Network Using Adaptive Particle Swarm Optimization and Orthogonal Least Squares 被引量:1
8
作者 Majid Moradi Zirkohi Mohammad Mehdi Fateh Ali Akbarzade 《Journal of Software Engineering and Applications》 2010年第7期704-708,共5页
This paper presents a two-level learning method for designing an optimal Radial Basis Function Network (RBFN) using Adaptive Velocity Update Relaxation Particle Swarm Optimization algorithm (AVURPSO) and Orthogonal Le... This paper presents a two-level learning method for designing an optimal Radial Basis Function Network (RBFN) using Adaptive Velocity Update Relaxation Particle Swarm Optimization algorithm (AVURPSO) and Orthogonal Least Squares algorithm (OLS) called as OLS-AVURPSO method. The novelty is to develop an AVURPSO algorithm to form the hybrid OLS-AVURPSO method for designing an optimal RBFN. The proposed method at the upper level finds the global optimum of the spread factor parameter using AVURPSO while at the lower level automatically constructs the RBFN using OLS algorithm. Simulation results confirm that the RBFN is superior to Multilayered Perceptron Network (MLPN) in terms of network size and computing time. To demonstrate the effectiveness of proposed OLS-AVURPSO in the design of RBFN, the Mackey-Glass Chaotic Time-Series as an example is modeled by both MLPN and RBFN. 展开更多
关键词 RADIAL BASIS Function Network ORTHOGONAL Least SQUARES Algorithm particle swarm optimization Mackey-Glass chaotic Time-Series
下载PDF
Dynamic Self-Adaptive Double Population Particle Swarm Optimization Algorithm Based on Lorenz Equation
9
作者 Yan Wu Genqin Sun +4 位作者 Keming Su Liang Liu Huaijin Zhang Bingsheng Chen Mengshan Li 《Journal of Computer and Communications》 2017年第13期9-20,共12页
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o... In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems. 展开更多
关键词 Improved particle swarm optimization Algorithm Double POPULATIONS MULTI-OBJECTIVE Adaptive Strategy chaotic SEQUENCE
下载PDF
Dynamics analysis of chaotic maps: From perspective on parameter estimation by meta-heuristic algorithm 被引量:4
10
作者 Yue-Xi Peng Ke-Hui Sun Shao-Bo He 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第3期112-118,共7页
Chaotic encryption is one of hot topics in cryptography, which has received increasing attention. Among many encryption methods, chaotic map is employed as an important source of pseudo-random numbers(PRNS). Although ... Chaotic encryption is one of hot topics in cryptography, which has received increasing attention. Among many encryption methods, chaotic map is employed as an important source of pseudo-random numbers(PRNS). Although the randomness and the butterfly effect of chaotic map make the generated sequence look very confused, its essence is still the deterministic behavior generated by a set of deterministic parameters. Therefore, the unceasing improved parameter estimation technology becomes one of potential threats for chaotic encryption, enhancing the attacking effect of the deciphering methods. In this paper, for better analyzing the cryptography, we focus on investigating the condition of chaotic maps to resist parameter estimation. An improved particle swarm optimization(IPSO) algorithm is introduced as the estimation method. Furthermore, a new piecewise principle is proposed for increasing estimation precision. Detailed experimental results demonstrate the effectiveness of the new estimation principle, and some new requirements are summarized for a secure chaotic encryption system. 展开更多
关键词 PARAMETER estimation chaotic MAP particle swarm optimization chaotic ENCRYPTION
下载PDF
Predicting of Power Quality Steady State Index Based on Chaotic Theory Using Least Squares Support Vector Machine 被引量:2
11
作者 Aiqiang Pan Jian Zhou +2 位作者 Peng Zhang Shunfu Lin Jikai Tang 《Energy and Power Engineering》 2017年第4期713-724,共12页
An effective power quality prediction for regional power grid can provide valuable references and contribute to the discovering and solving of power quality problems. So a predicting model for power quality steady sta... An effective power quality prediction for regional power grid can provide valuable references and contribute to the discovering and solving of power quality problems. So a predicting model for power quality steady state index based on chaotic theory and least squares support vector machine (LSSVM) is proposed in this paper. At first, the phase space reconstruction of original power quality data is performed to form a new data space containing the attractor. The new data space is used as training samples for the LSSVM. Then in order to predict power quality steady state index accurately, the particle swarm algorithm is adopted to optimize parameters of the LSSVM model. According to the simulation results based on power quality data measured in a certain distribution network, the model applies to several indexes with higher forecasting accuracy and strong practicability. 展开更多
关键词 chaotic THEORY Least SQUARES Support Vector Machine (LSSVM) Power Quality STEADY State Index Phase Space Reconstruction particle swarm optimization
下载PDF
Genetic programming-based chaotic time series modeling 被引量:1
12
作者 张伟 吴智铭 杨根科 《Journal of Zhejiang University Science》 EI CSCD 2004年第11期1432-1439,共8页
This paper proposes a Genetic Programming-Based Modeling (GPM) algorithm on chaotic time series. GP is used here to search for appropriate model structures in function space, and the Particle Swarm Optimization (PSO) ... This paper proposes a Genetic Programming-Based Modeling (GPM) algorithm on chaotic time series. GP is used here to search for appropriate model structures in function space, and the Particle Swarm Optimization (PSO) algorithm is used for Nonlinear Parameter Estimation (NPE) of dynamic model structures. In addition, GPM integrates the results of Nonlinear Time Series Analysis (NTSA) to adjust the parameters and takes them as the criteria of established models. Experiments showed the effectiveness of such improvements on chaotic time series modeling. 展开更多
关键词 chaotic time series analysis Genetic programming modeling Nonlinear Parameter Estimation (NPE) particle swarm optimization (PSO) Nonlinear system identification
下载PDF
Optimal Operation of Energy Internet Based on User Electricity Anxiety and Chaotic Spatial Variation Particle Swarm Optimization 被引量:1
13
作者 Dongsheng Yang Qianqian Chong +1 位作者 Bo Hu Min Ma 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2018年第3期243-253,共11页
Ignoring load characteristics and not considering user feeling with regard to the optimal operation of Energy Internet(EI) results in a large error in optimization. Thus, results are not consistent with the actual o... Ignoring load characteristics and not considering user feeling with regard to the optimal operation of Energy Internet(EI) results in a large error in optimization. Thus, results are not consistent with the actual operating conditions. To solve these problems, this paper proposes an optimization method based on user Electricity Anxiety(EA) and Chaotic Space Variation Particle Swarm Optimization(CSVPSO). First, the load is divided into critical load, translation load, shiftable load, and temperature load. Then, on the basis of the different load characteristics,the concept of the user EA degree is presented, and the optimization model of the EI is provided. This paper also presents a CSVPSO algorithm to solve the optimization problem because the traditional particle swarm optimization algorithm takes a long time and particles easily fall into the local optimum. In CSVPSO, the particles with lower fitness value are operated by using cross operation, and velocity variation is performed for particles with a speed lower than the setting threshold. The effectiveness of the proposed method is verified by simulation analysis.Simulation results show that the proposed method can be used to optimize the operation of EI on the basis of the full consideration of the load characteristics. Moreover, the optimization algorithm has high accuracy and computational efficiency. 展开更多
关键词 Electricity Anxiety(EA) Energy Internet(EI) chaotic spatial variation particle swarm optimization optimal operation
原文传递
基于改进PSO算法的光伏阵列MPPT研究 被引量:1
14
作者 商立群 闵鹏波 张建涛 《传感器与微系统》 CSCD 北大核心 2024年第8期35-39,共5页
为解决传统粒子群优化(PSO)算法在寻优过程中出现粒子早熟、收敛速度慢、易陷入局部优化等问题,提出一种基于反向学习的Logistic-Tent双重混沌映射和时变双重压缩因子(TVCF)策略的改进粒子群优化(LT-TVCFPSO)算法,在传统PSO算法基础上,... 为解决传统粒子群优化(PSO)算法在寻优过程中出现粒子早熟、收敛速度慢、易陷入局部优化等问题,提出一种基于反向学习的Logistic-Tent双重混沌映射和时变双重压缩因子(TVCF)策略的改进粒子群优化(LT-TVCFPSO)算法,在传统PSO算法基础上,引入了Logistic-Tent混沌映射和TVCF,既可增强种群多样性,避免粒子早熟,跳出局部优化,又能加快粒子收敛,提升全局寻优能力。最后在MATLAB/Simu-link上进行仿真。仿真结果表明:相比于传统MPPT算法,LT-TVCFPSO算法能够快速准确地追踪到全局最大功率点(GMPP)。 展开更多
关键词 全局寻优 改进粒子群优化算法 双重混沌映射 时变双重压缩因子 全局最大功率点
下载PDF
基于双通道生成对抗网络的城市用电负荷缺失数据补全方法
15
作者 刘志坚 陶韵旭 +2 位作者 刘航 罗灵琳 李明 《电力系统自动化》 EI CSCD 北大核心 2024年第17期161-170,共10页
用电负荷数据的完整性与有效性在负荷预测等应用中具有重要意义。传统的缺失数据补全方法缺乏对用电负荷和多种外部时空关联信息的挖掘,难以获得高精度的补全结果。文中提出了一种双通道生成对抗网络,对缺失的负荷数据进行补全。首先,... 用电负荷数据的完整性与有效性在负荷预测等应用中具有重要意义。传统的缺失数据补全方法缺乏对用电负荷和多种外部时空关联信息的挖掘,难以获得高精度的补全结果。文中提出了一种双通道生成对抗网络,对缺失的负荷数据进行补全。首先,根据负荷的周期性变化特征和时空关联性构建三阶负荷张量,并将影响负荷变化的多种外部因素构建为三阶辅助信息张量。然后,为满足两种张量的双输入需求,在生成对抗网络的输入层引入双通道机制,通过卷积与反卷积运算提取张量的特征;为提升网络对张量数据的训练效果和补全精度,将张量分解损失引入原始损失函数,并采用改进的混沌映射粒子群优化算法联合优化超参数和网络。最后,在真实负荷数据集上开展数据补全实验。结果表明,所提方法能够对随机缺失率不超过50%、连续缺失不超过3天的负荷数据进行准确补全。 展开更多
关键词 负荷数据缺失 负荷预测 三阶张量 生成对抗网络 分解损失 混沌映射粒子群优化算法 补全方法
下载PDF
基于混沌粒子群改进支持向量机对露天矿边坡稳定性的分类预测
16
作者 赵国彦 邹景煜 王猛 《矿冶工程》 CAS 北大核心 2024年第2期8-12,共5页
为了简便有效地评估边坡稳定性状态,针对目前传统机器学习的算法选择与超参数优化等难题,提出了基于混沌粒子群优化算法的4种机器学习模型,并对其预测性能进行了对比。建立了包含221组露天矿边坡稳定性案例的数据库,其中80%的数据用于训... 为了简便有效地评估边坡稳定性状态,针对目前传统机器学习的算法选择与超参数优化等难题,提出了基于混沌粒子群优化算法的4种机器学习模型,并对其预测性能进行了对比。建立了包含221组露天矿边坡稳定性案例的数据库,其中80%的数据用于训练,20%的数据用于模型测试。4种模型预测结果及工程实例验证结果表明,基于混沌粒子群改进支持向量机模型的预测效果上总体优于其他3种机器学习模型,预测准确率88%,能够有效预测边坡稳定性,可为露天矿边坡安全提供可靠的预测结果。 展开更多
关键词 边坡稳定性 混沌粒子群优化 支持向量机 预测
下载PDF
基于多变量灰色系统的乏信息堤防变形短期预测模型
17
作者 顾冲时 崔欣然 +4 位作者 顾昊 吴艳 朱明远 林旭 郭瑞 《江苏水利》 2024年第6期1-5,共5页
依据信息模糊和不确定状态下乏信息数据处理理论,提出了一种改进多变量灰色系统的乏信息堤防短期预测模型;引入多变量灰色模型对多测点的沉降变形序列进行拟合,结合混沌粒子群优化算法和分数阶微积分理论,实现了在乏信息条件下对堤防多... 依据信息模糊和不确定状态下乏信息数据处理理论,提出了一种改进多变量灰色系统的乏信息堤防短期预测模型;引入多变量灰色模型对多测点的沉降变形序列进行拟合,结合混沌粒子群优化算法和分数阶微积分理论,实现了在乏信息条件下对堤防多测点变形的短期预测;由对比结果可知,研究提出的模型可行且有效,填补了堤防乏信息处理模型的空白。 展开更多
关键词 乏信息 堤防 多变量灰色模型 分数阶微积分 混沌粒子群算法
下载PDF
基于混沌多目标粒子群算法的综合能源调度
18
作者 周孟然 汪飞 《重庆工商大学学报(自然科学版)》 2024年第2期1-8,共8页
目的针对当前综合能源系统中资源协同优化效率不足、微网运行经济性和环保性差的问题,提出了一种计及风电储能及不稳定因素的微网优化调度方法。方法该方法在微网负荷侧需求响应对新能源消纳影响的基础上,以消纳新能源和削峰填谷为目的... 目的针对当前综合能源系统中资源协同优化效率不足、微网运行经济性和环保性差的问题,提出了一种计及风电储能及不稳定因素的微网优化调度方法。方法该方法在微网负荷侧需求响应对新能源消纳影响的基础上,以消纳新能源和削峰填谷为目的,提出了优化负荷曲线的方案;然后,考虑微网调度侧风电出力的不稳定性以及微网内部设备的耦合,进行优化调度以降低微网运行成本、减少环境惩罚费用并提高风电消纳平稳性;最后,采用混沌多目标粒子群算法对优化问题进行求解,并在风电不稳定度占比0%、5%、10%和15%时进行了算例仿真分析。结果当风电不稳定度为10%和加入风电储能,系统运行成本和环境治理费用最少,比方案1和无风电储能少6919.4元,风电平稳量也提高38 kWh。在电热冷网中,负荷侧加入需求响应后,系统得到稳定运行和能源合理利用,可以很好地满足负荷侧用能需求。从算法对比中,混沌多目标粒子群算法加入自适应权重和变异率后,具有较强的全局搜索能力和更好的准确性。结论该方法通过合理设置风电不稳定度能够有效降低运行成本和环境惩罚费用,提高风电稳定性,其次,负荷侧的需求响应可以一定程度地削峰填谷和消纳新能源。 展开更多
关键词 综合能源系统 优化调度 混沌多目标粒子群算法 削峰填谷 消纳新能源
下载PDF
基于寻优算法的双馈风机变流器动态运行控制参数辨识 被引量:1
19
作者 董福杰 刘颖明 +2 位作者 王晓东 赵宇 王宇 《电力科学与工程》 2024年第3期61-69,共9页
针对运行过程中双馈风机变流器控制参数难以获取的问题,提出了一种基于自适应混沌粒子群算法的转子侧变流器参数辨识方法。首先,基于机组实际运行下可量测电气量时间序列,建立双馈风机变流器控制系统离散化数学模型;然后,根据不同观测... 针对运行过程中双馈风机变流器控制参数难以获取的问题,提出了一种基于自适应混沌粒子群算法的转子侧变流器参数辨识方法。首先,基于机组实际运行下可量测电气量时间序列,建立双馈风机变流器控制系统离散化数学模型;然后,根据不同观测电气量下参数的轨迹灵敏度,对辨识难易程度进行分析;最后,利用自适应混沌粒子群算法对变流器PI控制参数进行辨识。仿真实验结果验证了所提出辨识方法的准确性与可行性。 展开更多
关键词 风力发电机组 参数辨识 转子侧变流器 自适应混沌粒子群算法
下载PDF
考虑碳交易机制的海港综合能源系统电-热混合储能优化配置 被引量:1
20
作者 林森 文书礼 +4 位作者 朱淼 戴群 鄢伦 赵耀 叶惠丽 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第9期1344-1356,共13页
随着港口电气化进程逐渐加速,单一的港口供能方式正在向多种能源深度融合演变.为响应我国“碳达峰、碳中和”战略目标,进一步提升海港综合能源系统的经济与环境双重效益,提出一种考虑碳交易机制的电-热混合式储能优化配置方案.首先,建... 随着港口电气化进程逐渐加速,单一的港口供能方式正在向多种能源深度融合演变.为响应我国“碳达峰、碳中和”战略目标,进一步提升海港综合能源系统的经济与环境双重效益,提出一种考虑碳交易机制的电-热混合式储能优化配置方案.首先,建立海港综合能源系统模型,并给出计及碳交易市场的交易方案;其次,构建双层优化配置框架,上层优化配置混合式储能容量,下层引入碳交易机制,满足港口综合能源系统低碳经济运行需求;最后,结合网格自适应直接搜索法与自适应混沌粒子群算法优势,利用混合式优化算法对双层优化模型进行求解.以天津港的实际运行数据为例,验证该方法的有效性.算例结果表明,所提方法不仅可以降低系统的投入成本,还能显著减少港区碳排放,从而进一步提升港口经济和环境效益. 展开更多
关键词 海港综合能源系统 碳交易机制 混合储能 网格自适应直接搜索算法 自适应混沌粒子群算法
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部