The fuel properties of coastal plant Xanthium sibiricum were investigated in thermogravimetrics.The distributed activation energy model was employed in the kinetic analysis and a simplified mathematical model that can...The fuel properties of coastal plant Xanthium sibiricum were investigated in thermogravimetrics.The distributed activation energy model was employed in the kinetic analysis and a simplified mathematical model that can predict the thermogravimetry curves was proposed.The results show that the initial decomposition temperature tends to increase with the heating rate.The distributed E values ranged from 169.08 to 177.43 kJ/mol,and the frequency factor values ranged from 6.59× 10~8 to 1.22×10^(12)/s at different conversion rates.Furthermore,the prediction made with the simplified mathematical model perfectly matched the experimental data,and the model was found to be simple and accurate for the prediction of devolatilization curves.展开更多
基金Supported by the National Key Technology R&D Program of China(Nos.2011BAD13B07,2013BAB01B00)
文摘The fuel properties of coastal plant Xanthium sibiricum were investigated in thermogravimetrics.The distributed activation energy model was employed in the kinetic analysis and a simplified mathematical model that can predict the thermogravimetry curves was proposed.The results show that the initial decomposition temperature tends to increase with the heating rate.The distributed E values ranged from 169.08 to 177.43 kJ/mol,and the frequency factor values ranged from 6.59× 10~8 to 1.22×10^(12)/s at different conversion rates.Furthermore,the prediction made with the simplified mathematical model perfectly matched the experimental data,and the model was found to be simple and accurate for the prediction of devolatilization curves.