A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solu...A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.展开更多
In order to study the effect of temperature difference load (TDL) along the vertical direction of a simply supported beam bridge section on the vertical irregularity, a rail-bridge-piers calculation model was establ...In order to study the effect of temperature difference load (TDL) along the vertical direction of a simply supported beam bridge section on the vertical irregularity, a rail-bridge-piers calculation model was established. Taking 32 m simply supported box beam bridge which is widely used in the construction of pas- senger dedicated line in China as an example, influences of the temperature variation between the bottom and top of the bridge, temperature curve index, type of temperature gradient, and beam height on track vertical irregularity were analyzed with the model. The results show that TDL has more effects on long wave track irregularity than on short one, and the wavelength mainly affected is approxi- mately equal to the beam span. The amplitude of irregu- larity caused by TDL is largely affected by the temperature variation, temperature curve index, and type of temperature gradient, so it is necessary to monitor the temperaturedistribution of bridges in different regions to provide accurate calculation parameters. In order to avoid the irregularity exceeding the limit values, the height of 32, 48, and 64 m simply supported box beam bridges must not be less than 2.15, 3.2, and 4.05 m, respectively.展开更多
Using the inverse method, the analytical solution of a simply supported piezoelectric beam subjected to a uniformly distributed loading has been studied.First,the polynomials of stress function and induction function ...Using the inverse method, the analytical solution of a simply supported piezoelectric beam subjected to a uniformly distributed loading has been studied.First,the polynomials of stress function and induction function are given.Then, considering the gradient properties of the elastic parameter and the potential funciton as well as the piezoelectric parameter,the analytical solution of a simply supported beam subjected to a uniformly distributed loading is obtained and discussed.展开更多
The stability and local bifurcation of a simply-supported flexible beam (Bernoulli- Euler type) carrying a moving mass and subjected to harmonic axial excitation are investigated. In the theoretical analysis, the pa...The stability and local bifurcation of a simply-supported flexible beam (Bernoulli- Euler type) carrying a moving mass and subjected to harmonic axial excitation are investigated. In the theoretical analysis, the partial differential equation of motion with the fifth-order nonlinear term is solved using the method of multiple scales (a perturbation technique). The stability and local bifurcation of the beam are analyzed for 1/2 sub harmonic resonance. The results show that some of the parameters, especially the velocity of moving mass and external excitation, affect the local bifurcation significantly. Therefore, these parameters play important roles in the system stability.展开更多
基金supported by the Henan Provincial Science and Technology Research Project under Grant(152102310295).
文摘A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.
基金supported by the National Science Foundation (U1234201)the Doctorial Innovation Fund of Southwest Jiaotong University
文摘In order to study the effect of temperature difference load (TDL) along the vertical direction of a simply supported beam bridge section on the vertical irregularity, a rail-bridge-piers calculation model was established. Taking 32 m simply supported box beam bridge which is widely used in the construction of pas- senger dedicated line in China as an example, influences of the temperature variation between the bottom and top of the bridge, temperature curve index, type of temperature gradient, and beam height on track vertical irregularity were analyzed with the model. The results show that TDL has more effects on long wave track irregularity than on short one, and the wavelength mainly affected is approxi- mately equal to the beam span. The amplitude of irregu- larity caused by TDL is largely affected by the temperature variation, temperature curve index, and type of temperature gradient, so it is necessary to monitor the temperaturedistribution of bridges in different regions to provide accurate calculation parameters. In order to avoid the irregularity exceeding the limit values, the height of 32, 48, and 64 m simply supported box beam bridges must not be less than 2.15, 3.2, and 4.05 m, respectively.
文摘Using the inverse method, the analytical solution of a simply supported piezoelectric beam subjected to a uniformly distributed loading has been studied.First,the polynomials of stress function and induction function are given.Then, considering the gradient properties of the elastic parameter and the potential funciton as well as the piezoelectric parameter,the analytical solution of a simply supported beam subjected to a uniformly distributed loading is obtained and discussed.
文摘The stability and local bifurcation of a simply-supported flexible beam (Bernoulli- Euler type) carrying a moving mass and subjected to harmonic axial excitation are investigated. In the theoretical analysis, the partial differential equation of motion with the fifth-order nonlinear term is solved using the method of multiple scales (a perturbation technique). The stability and local bifurcation of the beam are analyzed for 1/2 sub harmonic resonance. The results show that some of the parameters, especially the velocity of moving mass and external excitation, affect the local bifurcation significantly. Therefore, these parameters play important roles in the system stability.