At a fully mechanized working face of a coal mine as prototype,we investigated,by simulation,the flow field and dust distribution during the process of its isolation by a curtain of air,using the CFD software, Fluent....At a fully mechanized working face of a coal mine as prototype,we investigated,by simulation,the flow field and dust distribution during the process of its isolation by a curtain of air,using the CFD software, Fluent.The results show that the air curtain installed on the shearer can effectively prevent the dust (especially the respirable dust)from diffusing into the work area of the operator,reducing the dust concentration on the side of the operator and greatly improving his working environment.The field application of the air curtain shows that the dust-isolation effect of an air curtain is quite noticeable.The isolation efficiency for respiratory dust is over 70%and,as well,it has good dust-isolation effect for nonrespiratory dust.The air curtain is a useful way to resolve the problem of dust-isolation at a fully mechanized working face.It has a practical background elsewhere with more extensive applications.展开更多
Bubble size distribution is the basic apparent performance and obvious characteristics in the air dense medium fluidized bed (ADMFB). The approaches of numerical simulation and experimental verification were combined ...Bubble size distribution is the basic apparent performance and obvious characteristics in the air dense medium fluidized bed (ADMFB). The approaches of numerical simulation and experimental verification were combined to conduct the further research on the bubble generation and movement behavior. The results show that ADMFB could display favorable expanded characteristics after steady fluidization. With different particle size distributions of magnetite powder as medium solids, we selected an appropriate prediction model for the mean bubble diameter in ADMFB. The comparison results indicate that the mean bubble diameters along the bed heights are 35 mm < D b < 66 mm and 40 mm < D b < 69 mm with the magnetite powder of 0.3 mm+0.15mm and 0.15mm+0.074mm, respectively. The prediction model provides good agreements with the experimental and simulation data. Based on the optimal operating gas velocity distribution, the mixture of magnetite powder and <1mm fine coal as medium solids were utilized to carry out the separation experiment on 6-50mm raw coal. The results show that an optimal separation density d P of 1.73g/cm 3 with a probable error E of 0.07g/cm 3 and a recovery efficiency of 99.97% is achieved, which indicates good separation performance by applying ADMFB.展开更多
Steady air injection upstream of the leading edge was used to increase the surge margin of a centrifugal compressor.To reveal the mechanism,steady numerical simulations were performed on a high pressure ratio centrifu...Steady air injection upstream of the leading edge was used to increase the surge margin of a centrifugal compressor.To reveal the mechanism,steady numerical simulations were performed on a high pressure ratio centrifugal compressor rotor operated with a rotor tip speed of 586 m/s.Eight different injection yaw angle with four different injection mass flow was performed to determine the configuration that provide the best results for the compression system studied in this work.The injection angle,α,was fifteen degree and the injectors were placed at short distance(ten percent of the inlet tip radius upstream of the compressor face) to achieve maximum control over the leading edge flow by varying individual injection parameters.The results show that at design speed(n=50 000 r/min) with injection flow rate more than 2% of the main flow rate and yaw angle between 20° and 30°,the mass flow rate at stall decreases for approximately 8%.But with higher injection rate,other compressor parameters were affected such as compressor efficiency and compressor total pressure ratio.展开更多
The air bag deformation data were obtained by high-speed dynamic videos experiments. Based on gas–liquid flow VOF model, dynamic mesh technique and deformation data, numerical simulations for different structure mode...The air bag deformation data were obtained by high-speed dynamic videos experiments. Based on gas–liquid flow VOF model, dynamic mesh technique and deformation data, numerical simulations for different structure models were achieved, and the law of water motion and influencing factors were analyzed.The results show that the flow in the length direction of the jig is smooth, and second pulsation appears in the separation time and forms the secondary separation. The installation position of screen and the number of air bags have a great influence on the uniformity of flow and velocity. The screen height cannot be too low to avoid forming the unstable flow. At the same time, the screen height cannot be too high, otherwise water velocity will be too small and was unable to provide enough power. At the height of 1.4m,velocity unevenness is minimum and the best uniform flow can be obtained. Compared with double air bags, there are the following features of single air bag: water flow is not smooth, the time achieving the maximum velocity is too long, maximum velocity is smaller, and overall effect is worse than double air bags.展开更多
To simulate steady airflows inside of wall-flow diesel particulate filters (DPF) with different reverse blowing pipes collocation, a mathematical model of the flow in a DPF is established by an equivalent continuum ...To simulate steady airflows inside of wall-flow diesel particulate filters (DPF) with different reverse blowing pipes collocation, a mathematical model of the flow in a DPF is established by an equivalent continuum approach. The experimental results agree well with the theoretical values calculated from the model. Simulation shows that the velocity and the pressure distribution of the filters in the regenerative process are key factors to the filter's regeneration. How to decrease the mal-distribution of the flow in the filter and how to achieve the better regenerative performance at the least cost of air consumption in the regenerative process are the ultimate goals of the study. Calculation and experiments show that the goals can be realized through adjusting the angle of two reverse blowing pipes and their relative location suitably.展开更多
The duct static pressure reset (DSPR) control method is a popular modern control method widely applied to variable air volume (VAV) systems of commercial buildings. In this paper, a VAV system simulation program was u...The duct static pressure reset (DSPR) control method is a popular modern control method widely applied to variable air volume (VAV) systems of commercial buildings. In this paper, a VAV system simulation program was used to predict the system performance and zone air temperature of two kinds of layouts that were applied to a typical floor of an existing building office in Hong Kong. The position where the static pressure sensor was placed should affect the zones temperature and energy consumption. The comparison of predictions of the two kinds of layouts indicates that with the same DSPR control method the layout of the air duct might influence the fan control result and energy savings.展开更多
Service-oriented air combat simulation architecture is proposed.The core design goal is high agility which represents the ability to accommodate the simulation requirements change.Its main idea is to design model unit...Service-oriented air combat simulation architecture is proposed.The core design goal is high agility which represents the ability to accommodate the simulation requirements change.Its main idea is to design model units as services that can communicate and interoperate with any other services at runtime.A service is autonomous and is fully defined by a description contract which contains some combination of syntactic,semantic,and behavioral information.Based on the architecture,air combat simulation system can be described as an abstract composition of description contracts.It becomes concrete at run time as services that implement the constituent description contracts are discovered and bind.The whole process is a continuous run-time activity that responds to simulation needs and the availability of services.This provides benefits of implementation transparency and minimal dependency between models.Thus,simulation system can minimize the impact of change on it and increase the overall efficiency to respond to requirements change.展开更多
This paper introduces the method of coal dust treatment in crushing station and the present situation of dust removal system in typical open-pit coal mine crushing station in China,and expounds the research idea of de...This paper introduces the method of coal dust treatment in crushing station and the present situation of dust removal system in typical open-pit coal mine crushing station in China,and expounds the research idea of determining comprehensive dust removal(suppression)system in crushing station inspired by the working principle of"range hood".Based on the design example and link optimization of the crush-ing station of open-pit coal mine I of Thar coalfield,this paper finally draws some conclusions on the key technologies of dust removal(suppression)system of open-pit coal mine crushing station.This study has certain reference value for the technical innovation of dust removal(suppression)system in crushing station,the realization of green mining in"crushing link",and the reduction and avoidance of ecological environment pollution in mining area.展开更多
As one of the main reasons causing leakage heat load in a refrigerator,mass and heat transfer through refrigerator door seal is of great importance to be studied.In this paper,a model is presented for numerical simula...As one of the main reasons causing leakage heat load in a refrigerator,mass and heat transfer through refrigerator door seal is of great importance to be studied.In this paper,a model is presented for numerical simulation of mass and heat transfer process through refrigerator door seal,and an experiment apparatus is designed and set up as well for comparison.A two-dimensional model and tracer gas method are used in simulation and experiment,respectively.It can be found that the relative deviations of air infiltration rate between the simulated results and experimental results were less than 1%,and the temperature difference errors at two special points of the door seal were less than 2.03℃.In conclusion,the simulated results are in good agreement with the experimental results.This paper initially sets up a model that can accurately simulate the heat and mass transfer through the refrigerator door seal,and the model can be used in refrigerator door seal optimization research in the follow-up study.展开更多
Value function approximation plays an important role in reinforcement learning(RL)with continuous state space,which is widely used to build decision models in practice.Many traditional approaches require experienced d...Value function approximation plays an important role in reinforcement learning(RL)with continuous state space,which is widely used to build decision models in practice.Many traditional approaches require experienced designers to manually specify the formulization of the approximating function,leading to the rigid,non-adaptive representation of the value function.To address this problem,a novel Q-value function approximation method named‘Hierarchical fuzzy Adaptive Resonance Theory’(HiART)is proposed in this paper.HiART is based on the Fuzzy ART method and is an adaptive classification network that learns to segment the state space by classifying the training input automatically.HiART begins with a highly generalized structure where the number of the category nodes is limited,which is beneficial to speed up the learning process at the early stage.Then,the network is refined gradually by creating the attached subnetworks,and a layered network structure is formed during this process.Based on this adaptive structure,HiART alleviates the dependence on expert experience to design the network parameter.The effectiveness and adaptivity of HiART are demonstrated in the Mountain Car benchmark problem with both fast learning speed and low computation time.Finally,a simulation application example of the one versus one air combat decision problem illustrates the applicability of HiART.展开更多
The effects of supply temperature and vertical location of inlet air on particle dispersion in a displacement ventilated (DV) room were numerically modeled with validation by experimental data from the literature. T...The effects of supply temperature and vertical location of inlet air on particle dispersion in a displacement ventilated (DV) room were numerically modeled with validation by experimental data from the literature. The results indicate that the temperature and vertical location of inlet supply air did not greatly affect the air distribution in the upper parts of a DV room, but could significantly influence the airflow pattern in the lower parts of the room, thus affecting the indoor air quality with contaminant sources located at the lower level, such as particles from working activities in an office. The numerical results also show that the inlet location would slightly influence the relative ventilation efficiency for the same air supply volume, but particle concentration in the breathing zone would be slightly lower with a low horizontal wall slot than a rectangular diffuser. Comparison of the results for two different supply temperatures in a DV room shows that, although lower supply temperature means less incoming air volume, since the indoor flow is mainly driven by buoyancy, lower supply temperature air could more efficiently remove passive sources (such as particles released from work activities in an office). However, in the breathing zone it gives higher concentration as compared to higher supply air temperature. To obtain good indoor air quality, low supply air temperature should be avoided because concentration in the breathing zone has a stronger and more direct impact on human health.展开更多
Combustion characteristics of methane jet flames in an industrial burner working in high temperature combustion regime were investigated experimentally and numerically to clarify the effects of swirling high temperatu...Combustion characteristics of methane jet flames in an industrial burner working in high temperature combustion regime were investigated experimentally and numerically to clarify the effects of swirling high temperature air on combustion.Speziale-Sarkar-Gatski(SSG) Reynolds stress model,Eddy-Dissipation Model(EDM),Discrete Ordinates Method(DTM) combined with Weighted-Sum-of-Grey Gases Model(WSGG) were employed for the numerical simulation.Both Thermal-NO and Prompt-NO mechanism were considered to evaluate the NO formation.Temperature distribution,NO emissions by experiment and computation in swirling and non-swirling patterns show combustion characteristics of methane jet flames are totally different.Non-swirling high temperature air made high NO formation while significant NO prohibition were achieved by swirling high temperature air.Furthermore,velocity fields,dimensionless major species mole fraction distributions and Thermal-NO molar reaction rate profiles by computation interpret an inner exhaust gas recirculation formed in the combustion zone in swirling case.展开更多
This paper presents the state of piloted flight simulation fidelity with a focus on the missing link needed to complete the flight simulation experience,namely the simulated ATC environment(SATCE).To date,there has be...This paper presents the state of piloted flight simulation fidelity with a focus on the missing link needed to complete the flight simulation experience,namely the simulated ATC environment(SATCE).To date,there has been a great deal of effort invested in providing the highest level of flight realism possible.However,little investment has gone into systems which are used to improve communication skills with ATC while in a populated active airspace.It is important to note that the relatively few SATCEs is not due to the lack of technology,since such products have been available for about a decade.The primary reason for its absence is the inability and unwillingness for operators to justify the investment in such a training tool.In the meantime,the aviation industry has recognized that pilots need to have better communication skills while operating in various conditions.Consequently ICAO,with help from ARINC Industry Activities/FSEMC,has already taken steps to recommend the inclusion of SATCE characteristics in flight simulation devices.The aviation and research communities need to assist efforts by producing the necessary studies and metrics which can be used to evaluate and validate SATCEs used in the flight training.展开更多
The zone model has been widely applied in control analysis of heating, ventilation and air conditioning (HVAC) systems to achieve a high building efficiency. This paper proposed a modified zone model which is much s...The zone model has been widely applied in control analysis of heating, ventilation and air conditioning (HVAC) systems to achieve a high building efficiency. This paper proposed a modified zone model which is much simpler in the HVAC system simulation and has the similar accuracy to the complicated simulation model. The proposed model took into consideration the effect of envelop heat reservoir on the room indoor temperature by introducing the thermal admittance of the inner surfaces of the building enclosure. The thermal admittance for the building enclosure was developed based on the building thermal network analytical theory and transfer function method. The efficacy of the proposed model was demonstrated by comparing it with the complicated model -- heat balance method (HTB2 program). The predicted results from the proposed model well agreed with those from the complicated simulation. The proposed model can then make the HVAC system dynamic simulation much faster and more acceptable for control design due to its simplicity and efficiency.展开更多
基金Financial support for this work,provided by the National Natural Science Foundation of China(No.50974060)the State Safety Production Science and Technology Development Plan (No.06-396)
文摘At a fully mechanized working face of a coal mine as prototype,we investigated,by simulation,the flow field and dust distribution during the process of its isolation by a curtain of air,using the CFD software, Fluent.The results show that the air curtain installed on the shearer can effectively prevent the dust (especially the respirable dust)from diffusing into the work area of the operator,reducing the dust concentration on the side of the operator and greatly improving his working environment.The field application of the air curtain shows that the dust-isolation effect of an air curtain is quite noticeable.The isolation efficiency for respiratory dust is over 70%and,as well,it has good dust-isolation effect for nonrespiratory dust.The air curtain is a useful way to resolve the problem of dust-isolation at a fully mechanized working face.It has a practical background elsewhere with more extensive applications.
基金financially supported by the National Natural Science Foundation of China (Nos. 51221462, 51134022,51174203 and 51074156)the National Basic Research Program of China (No. 2012CB214904)China Postdoctoral Science Foundation (No. 2013M531430)
文摘Bubble size distribution is the basic apparent performance and obvious characteristics in the air dense medium fluidized bed (ADMFB). The approaches of numerical simulation and experimental verification were combined to conduct the further research on the bubble generation and movement behavior. The results show that ADMFB could display favorable expanded characteristics after steady fluidization. With different particle size distributions of magnetite powder as medium solids, we selected an appropriate prediction model for the mean bubble diameter in ADMFB. The comparison results indicate that the mean bubble diameters along the bed heights are 35 mm < D b < 66 mm and 40 mm < D b < 69 mm with the magnetite powder of 0.3 mm+0.15mm and 0.15mm+0.074mm, respectively. The prediction model provides good agreements with the experimental and simulation data. Based on the optimal operating gas velocity distribution, the mixture of magnetite powder and <1mm fine coal as medium solids were utilized to carry out the separation experiment on 6-50mm raw coal. The results show that an optimal separation density d P of 1.73g/cm 3 with a probable error E of 0.07g/cm 3 and a recovery efficiency of 99.97% is achieved, which indicates good separation performance by applying ADMFB.
基金Supported by Chinese Specialized Research Fund for the Doctoral Program of Higher Education (20091101110014)the National Natural Science Foundation of China (51176013)National High Technology Research and Development Program of China("863" Program) (2007AA050502)
文摘Steady air injection upstream of the leading edge was used to increase the surge margin of a centrifugal compressor.To reveal the mechanism,steady numerical simulations were performed on a high pressure ratio centrifugal compressor rotor operated with a rotor tip speed of 586 m/s.Eight different injection yaw angle with four different injection mass flow was performed to determine the configuration that provide the best results for the compression system studied in this work.The injection angle,α,was fifteen degree and the injectors were placed at short distance(ten percent of the inlet tip radius upstream of the compressor face) to achieve maximum control over the leading edge flow by varying individual injection parameters.The results show that at design speed(n=50 000 r/min) with injection flow rate more than 2% of the main flow rate and yaw angle between 20° and 30°,the mass flow rate at stall decreases for approximately 8%.But with higher injection rate,other compressor parameters were affected such as compressor efficiency and compressor total pressure ratio.
基金provided by the Project of National Scientific and Technical Supporting Programs Funded of China(No.2012BAB13B03)
文摘The air bag deformation data were obtained by high-speed dynamic videos experiments. Based on gas–liquid flow VOF model, dynamic mesh technique and deformation data, numerical simulations for different structure models were achieved, and the law of water motion and influencing factors were analyzed.The results show that the flow in the length direction of the jig is smooth, and second pulsation appears in the separation time and forms the secondary separation. The installation position of screen and the number of air bags have a great influence on the uniformity of flow and velocity. The screen height cannot be too low to avoid forming the unstable flow. At the same time, the screen height cannot be too high, otherwise water velocity will be too small and was unable to provide enough power. At the height of 1.4m,velocity unevenness is minimum and the best uniform flow can be obtained. Compared with double air bags, there are the following features of single air bag: water flow is not smooth, the time achieving the maximum velocity is too long, maximum velocity is smaller, and overall effect is worse than double air bags.
基金This project is supported by National Hi-tech Research and DevelopmentProgram of China (863 Program, No.2003AA643010B).
文摘To simulate steady airflows inside of wall-flow diesel particulate filters (DPF) with different reverse blowing pipes collocation, a mathematical model of the flow in a DPF is established by an equivalent continuum approach. The experimental results agree well with the theoretical values calculated from the model. Simulation shows that the velocity and the pressure distribution of the filters in the regenerative process are key factors to the filter's regeneration. How to decrease the mal-distribution of the flow in the filter and how to achieve the better regenerative performance at the least cost of air consumption in the regenerative process are the ultimate goals of the study. Calculation and experiments show that the goals can be realized through adjusting the angle of two reverse blowing pipes and their relative location suitably.
文摘The duct static pressure reset (DSPR) control method is a popular modern control method widely applied to variable air volume (VAV) systems of commercial buildings. In this paper, a VAV system simulation program was used to predict the system performance and zone air temperature of two kinds of layouts that were applied to a typical floor of an existing building office in Hong Kong. The position where the static pressure sensor was placed should affect the zones temperature and energy consumption. The comparison of predictions of the two kinds of layouts indicates that with the same DSPR control method the layout of the air duct might influence the fan control result and energy savings.
文摘Service-oriented air combat simulation architecture is proposed.The core design goal is high agility which represents the ability to accommodate the simulation requirements change.Its main idea is to design model units as services that can communicate and interoperate with any other services at runtime.A service is autonomous and is fully defined by a description contract which contains some combination of syntactic,semantic,and behavioral information.Based on the architecture,air combat simulation system can be described as an abstract composition of description contracts.It becomes concrete at run time as services that implement the constituent description contracts are discovered and bind.The whole process is a continuous run-time activity that responds to simulation needs and the availability of services.This provides benefits of implementation transparency and minimal dependency between models.Thus,simulation system can minimize the impact of change on it and increase the overall efficiency to respond to requirements change.
文摘This paper introduces the method of coal dust treatment in crushing station and the present situation of dust removal system in typical open-pit coal mine crushing station in China,and expounds the research idea of determining comprehensive dust removal(suppression)system in crushing station inspired by the working principle of"range hood".Based on the design example and link optimization of the crush-ing station of open-pit coal mine I of Thar coalfield,this paper finally draws some conclusions on the key technologies of dust removal(suppression)system of open-pit coal mine crushing station.This study has certain reference value for the technical innovation of dust removal(suppression)system in crushing station,the realization of green mining in"crushing link",and the reduction and avoidance of ecological environment pollution in mining area.
基金Supported by the National Science Fund for Distinguished Young Scholar(51525604)111 project B16038
文摘As one of the main reasons causing leakage heat load in a refrigerator,mass and heat transfer through refrigerator door seal is of great importance to be studied.In this paper,a model is presented for numerical simulation of mass and heat transfer process through refrigerator door seal,and an experiment apparatus is designed and set up as well for comparison.A two-dimensional model and tracer gas method are used in simulation and experiment,respectively.It can be found that the relative deviations of air infiltration rate between the simulated results and experimental results were less than 1%,and the temperature difference errors at two special points of the door seal were less than 2.03℃.In conclusion,the simulated results are in good agreement with the experimental results.This paper initially sets up a model that can accurately simulate the heat and mass transfer through the refrigerator door seal,and the model can be used in refrigerator door seal optimization research in the follow-up study.
文摘Value function approximation plays an important role in reinforcement learning(RL)with continuous state space,which is widely used to build decision models in practice.Many traditional approaches require experienced designers to manually specify the formulization of the approximating function,leading to the rigid,non-adaptive representation of the value function.To address this problem,a novel Q-value function approximation method named‘Hierarchical fuzzy Adaptive Resonance Theory’(HiART)is proposed in this paper.HiART is based on the Fuzzy ART method and is an adaptive classification network that learns to segment the state space by classifying the training input automatically.HiART begins with a highly generalized structure where the number of the category nodes is limited,which is beneficial to speed up the learning process at the early stage.Then,the network is refined gradually by creating the attached subnetworks,and a layered network structure is formed during this process.Based on this adaptive structure,HiART alleviates the dependence on expert experience to design the network parameter.The effectiveness and adaptivity of HiART are demonstrated in the Mountain Car benchmark problem with both fast learning speed and low computation time.Finally,a simulation application example of the one versus one air combat decision problem illustrates the applicability of HiART.
基金supported by the National Natural Science Foundation of China (Grant No. 40975093)Shanghai Educational Development Foundation titled "Shuguang Project", P.R. China(Grant No. 03SG30)
文摘The effects of supply temperature and vertical location of inlet air on particle dispersion in a displacement ventilated (DV) room were numerically modeled with validation by experimental data from the literature. The results indicate that the temperature and vertical location of inlet supply air did not greatly affect the air distribution in the upper parts of a DV room, but could significantly influence the airflow pattern in the lower parts of the room, thus affecting the indoor air quality with contaminant sources located at the lower level, such as particles from working activities in an office. The numerical results also show that the inlet location would slightly influence the relative ventilation efficiency for the same air supply volume, but particle concentration in the breathing zone would be slightly lower with a low horizontal wall slot than a rectangular diffuser. Comparison of the results for two different supply temperatures in a DV room shows that, although lower supply temperature means less incoming air volume, since the indoor flow is mainly driven by buoyancy, lower supply temperature air could more efficiently remove passive sources (such as particles released from work activities in an office). However, in the breathing zone it gives higher concentration as compared to higher supply air temperature. To obtain good indoor air quality, low supply air temperature should be avoided because concentration in the breathing zone has a stronger and more direct impact on human health.
文摘Combustion characteristics of methane jet flames in an industrial burner working in high temperature combustion regime were investigated experimentally and numerically to clarify the effects of swirling high temperature air on combustion.Speziale-Sarkar-Gatski(SSG) Reynolds stress model,Eddy-Dissipation Model(EDM),Discrete Ordinates Method(DTM) combined with Weighted-Sum-of-Grey Gases Model(WSGG) were employed for the numerical simulation.Both Thermal-NO and Prompt-NO mechanism were considered to evaluate the NO formation.Temperature distribution,NO emissions by experiment and computation in swirling and non-swirling patterns show combustion characteristics of methane jet flames are totally different.Non-swirling high temperature air made high NO formation while significant NO prohibition were achieved by swirling high temperature air.Furthermore,velocity fields,dimensionless major species mole fraction distributions and Thermal-NO molar reaction rate profiles by computation interpret an inner exhaust gas recirculation formed in the combustion zone in swirling case.
文摘This paper presents the state of piloted flight simulation fidelity with a focus on the missing link needed to complete the flight simulation experience,namely the simulated ATC environment(SATCE).To date,there has been a great deal of effort invested in providing the highest level of flight realism possible.However,little investment has gone into systems which are used to improve communication skills with ATC while in a populated active airspace.It is important to note that the relatively few SATCEs is not due to the lack of technology,since such products have been available for about a decade.The primary reason for its absence is the inability and unwillingness for operators to justify the investment in such a training tool.In the meantime,the aviation industry has recognized that pilots need to have better communication skills while operating in various conditions.Consequently ICAO,with help from ARINC Industry Activities/FSEMC,has already taken steps to recommend the inclusion of SATCE characteristics in flight simulation devices.The aviation and research communities need to assist efforts by producing the necessary studies and metrics which can be used to evaluate and validate SATCEs used in the flight training.
文摘The zone model has been widely applied in control analysis of heating, ventilation and air conditioning (HVAC) systems to achieve a high building efficiency. This paper proposed a modified zone model which is much simpler in the HVAC system simulation and has the similar accuracy to the complicated simulation model. The proposed model took into consideration the effect of envelop heat reservoir on the room indoor temperature by introducing the thermal admittance of the inner surfaces of the building enclosure. The thermal admittance for the building enclosure was developed based on the building thermal network analytical theory and transfer function method. The efficacy of the proposed model was demonstrated by comparing it with the complicated model -- heat balance method (HTB2 program). The predicted results from the proposed model well agreed with those from the complicated simulation. The proposed model can then make the HVAC system dynamic simulation much faster and more acceptable for control design due to its simplicity and efficiency.