期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Observations and Modeling of Incoming Longwave Radiation to Snow Beneath Forest Canopies in the West Tianshan Mountains, China 被引量:3
1
作者 LU Heng WEI Wen-shou +2 位作者 LIU Ming-zhe HAN Xi HONG Wen 《Journal of Mountain Science》 SCIE CSCD 2014年第5期1138-1153,共16页
Forest canopy reduces shortwave radiation and increases the incoming longwave radiation to snowpacks beneath forest canopies. Furthermore, the effect of forest canopy may be changed by complex topography. In this pape... Forest canopy reduces shortwave radiation and increases the incoming longwave radiation to snowpacks beneath forest canopies. Furthermore, the effect of forest canopy may be changed by complex topography. In this paper, we measured and simulated the incoming longwave radiation to snow beneath forest at different canopy openness in the west Tianshan Mountains, China(43°16'N, 84°24'E) during spring 2013. A sensitivity study was conducted to explore the way that terrain influenced the incoming longwave radiation to snow beneath forest canopies. In the simulation model, measurement datasets, including air temperature, incoming shortwave radiation above canopy, and longwave radiation enhanced by adjacent terrain, were applied to calculate the incoming longwave radiation to snow beneath forest canopy. The simulation results were consistent with the measurements on hourly scale and daily scale. The effect of longwave radiation enhanced by terrain was important than that of shortwave radiation above forest canopy with different openness except the 20% canopy openness. The longwave radiation enhanced due to adjacent terrain increases with the slope increase and temperature rise. When air temperature(or slope) is relatively low, thelongwave radiation enhanced by adjacent terrain is not sensitive to slope(or air temperature), but the sensitivity increases with the decrease of snow cover area on sunny slope. The effect of longwave radiation is especially sensitive when the snow cover on sunny slope melts completely. The effect of incoming shortwave radiation reflected by adjacent terrain on incoming longwave radiation to snow beneath forest canopies is more slight than that of the enhanced longwave radiation. 展开更多
关键词 Incoming longwave radiation Snow beneath forest canopy Simulation model Complex topography Sensitivity study
下载PDF
Air flow characteristics of an air-assisted sprayer through horizontal crop canopy 被引量:3
2
作者 Pankaj Gupta N.P.S.Sirohi I.M.Mishra 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2012年第1期1-6,共6页
Artificially induced air currents or air-assistance to droplet spectrum produced by hydraulic nozzles not only facilitate in transporting and depositing the droplets in different parts of canopy but also reduce the ap... Artificially induced air currents or air-assistance to droplet spectrum produced by hydraulic nozzles not only facilitate in transporting and depositing the droplets in different parts of canopy but also reduce the application rate of chemicals.The air streams increase the velocity of smaller droplets so that extra momentum would increase impaction and improve penetration into the crop as well as mitigating the influence of wind on drift.It is necessary to quantify the airflow characteristics.But,control of climatic and other conditions in the field is very difficult.Thus,airflow characteristics study was done under controlled conditions on a horizontal simulated crop canopy.Based on this study,an airflow distribution model was developed and airflow characteristics for vegetable crops,namely,eggplant,chilli and bittergourd were predicted.The differences between predicted and actual field study values were not statistically significant.Kinetic energy of air stream dissipated with its movement from top to bottom of the canopy.The rate of kinetic energy dissipation was higher in denser canopies.Higher air velocity 15 m/s was the best as it produced maximum turbulence throughout the canopy. 展开更多
关键词 air assisted sprayer simulated crop canopy air velocity
原文传递
NUMERICAL SIMULATIONS OF TURBULENT FLOW IN AND ABOVE PLANT CANOPIES
3
作者 尹协远 J.D.Lin 《Acta meteorologica Sinica》 SCIE 1989年第2期242-249,共8页
The turbulent flow in and above plant canopies is of fundamental importance to the understanding of transport processes of momentum,heat and mass between plant canopies and atmosphere,and to microme- teorology.The Rey... The turbulent flow in and above plant canopies is of fundamental importance to the understanding of transport processes of momentum,heat and mass between plant canopies and atmosphere,and to microme- teorology.The Reynolds stress equation model(RSM)has been applied to calculate the turbulence in cano- pies in this paper.The calculated mean wind velocity profiles,Reynolds stress,turbulent kinetic energy and viscous dissipation rate in a corn canopy and a spruce forest are compared with field observed data and with Wilson's and Shaw's model.The velocity profiles and Rynolds stress calculated by both models are in good agreement,and the length scale of turbulence appears to be similar. 展开更多
关键词 NUMERICAL SIMULATIONS OF TURBULENT FLOW IN AND ABOVE PLANT CANOPIES AS RSM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部