期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
NUMERICAL SIMULATION ANALYSIS OF EXTERNAL FLOW FIELD OF WAGON-SHAPED CAR AT THE MOMENT OF PASSING 被引量:4
1
作者 GU Zhengqi HE Yibin +1 位作者 ZHOU Wei JIANG Bo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第4期76-80,共5页
In the course of studying on aerodynamic change and its effect on steering stability and controllability of an automobile in passing, because of multi interaction streams, it is difficult to use traditional methods, s... In the course of studying on aerodynamic change and its effect on steering stability and controllability of an automobile in passing, because of multi interaction streams, it is difficult to use traditional methods, such as wind tunnel test and road test. If the passing process of an automobile is divided into many time segments, so as to avoid the use of moving mesh which takes large calculation resource and CPU processing time in calculating, the segments are simulated with computational fluid dynamics (CFD) method, then the approximate computational results about external flow field will be obtained. On the basis of the idea, the change of external flow field of wagon-shaped car at the moment of passing is simulated through solving three-dimensional, steady and uncompressible N-S equations with finite volume method. Numerical simulation analysis of side force coefficient, stream lines, body surface pressure distribution of wagon-shaped car are presented and a preliminary discussion of aerodynamic characteristics of correlative situations is obtained. Finally, the C3 -x/l curve of side force coefficient(C3) of car following relative distance (x/l) between cars is obtained. By comparison, the curve is coincident well with the experimental data, which shows creditability of numerical simulation methods presented. 展开更多
关键词 External flow field Passing Numerical simulation Side force coefficient
下载PDF
Molecular simulation studies of hydrocarbon and carbon dioxide adsorption on coal 被引量:1
2
作者 Junfang Zhang Keyu Liu +4 位作者 M.B.Clennell D.N.Dewhurst Zhejun Pan M.Pervukhina Tongcheng Han 《Petroleum Science》 SCIE CAS CSCD 2015年第4期692-704,共13页
Sorption isotherms of hydrocarbon and carbon dioxide (CO2) provide crucial information for designing processes to sequester CO2 and recover natural gas from unmineable coal beds. Methane (CH4), ethane (C2H6), an... Sorption isotherms of hydrocarbon and carbon dioxide (CO2) provide crucial information for designing processes to sequester CO2 and recover natural gas from unmineable coal beds. Methane (CH4), ethane (C2H6), and CO2 adsorption isotherms on dry coal and the temperature effect on their maximum sorption capacity have been studied by performing combined Monte Carlo (MC) and molecular dynamics (MD) simulations at temperatures of 308 and 370 K (35 and 97 ~C) and at pressures up to 10 MPa. Simulation results demonstrate that absolute sorption (expressed as a mass basis) divided by bulk gas density has negligible temperature effect on CH4, C2H6, and CO2 sorption on dry coal when pressure is over 6 MPa. CO2 is more closely packed due to stronger interaction with coal and the stronger interaction between CO2 mole- cules compared, respectively, with the interactions between hydrocarbons and coal and between hydrocarbons. The results of this work suggest that the "a" constant (pro- portional to TcPc) in the Peng-Robinson equation of state is an important factor affecting the sorption behavior of hydrocarbons. CO2 injection pressures of lower than 8 MPa may be desirable for CH4 recovery and CO2 sequestration. This study provides a quantitative under- standing of the effects of temperature on coal sorptioncapacity for CH4, C2H6, and CO2 from a microscopic perspective. 展开更多
关键词 Molecular simulation - GROMOS force field -Coal bed methane - Sorption isotherm Bituminous coal Hydrocarbons Carbon dioxide
下载PDF
Numerical Study on the Hydrodynamic Characteristics of Biofouled Full-Scale Net Cage 被引量:4
3
作者 毕春伟 赵云鹏 董国海 《China Ocean Engineering》 SCIE EI CSCD 2015年第3期401-414,共14页
The effect of biofouling on the hydrodynamic characteristics of the net cage is of particular interest as biofouled nettings can significantly reduce flow of well-oxygenated water reaching the stocked fish. For comput... The effect of biofouling on the hydrodynamic characteristics of the net cage is of particular interest as biofouled nettings can significantly reduce flow of well-oxygenated water reaching the stocked fish. For computational efficiency, the porous-media fluid model is proposed to simulate flow through the biofouled plane net and full-scale net cage. The porous coefficients of the porous-media fluid model can be determined from the quadratic-function relationship between the hydrodynamic forces on a plane net and the flow velocity using the least squares method. In this study, drag forces on and flow fields around five plane nets with different levels of biofouling are calculated by use of the proposed model. The numerical results are compared with the experimental data of Swift et al.(2006) and the effectiveness of the numerical model is presented. On that basis, flow through full-scale net cages with the same level of biofouling as the tested plane nets are modeled. The flow fields inside and around biofouled net cages are analyzed and the drag force acting on a net cage is estimated by a control volume analysis method. According to the numerical results, empirical formulas of reduction in flow velocity and load on a net cage are derived as function of drag coefficient of the corresponding biofouled netting. 展开更多
关键词 net cage biofouling drag force flow field numerical simulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部