This paper establishes a mathematical model of multi-objective optimization with behavior constraints in solid space based on the problem of optimal design of hydraulic manifold blocks (HMB). Due to the limitation o...This paper establishes a mathematical model of multi-objective optimization with behavior constraints in solid space based on the problem of optimal design of hydraulic manifold blocks (HMB). Due to the limitation of its local search ability of genetic algorithm (GA) in solving a massive combinatorial optimization problem, simulated annealing (SA) is combined, the multi-parameter concatenated coding is adopted, and the memory function is added. Thus a hybrid genetic-simulated annealing with memory function is formed. Examples show that the modified algorithm can improve the local search ability in the solution space, and the solution quality.展开更多
The similarity measure is crucial to the performance of spectral clustering. The Gaussian kernel function based on the Euclidean distance is usual y adopted as the similarity measure. However, the Euclidean distance m...The similarity measure is crucial to the performance of spectral clustering. The Gaussian kernel function based on the Euclidean distance is usual y adopted as the similarity measure. However, the Euclidean distance measure cannot ful y reveal the complex distribution data, and the result of spectral clustering is very sensitive to the scaling parameter. To solve these problems, a new manifold distance measure and a novel simulated anneal-ing spectral clustering (SASC) algorithm based on the manifold distance measure are proposed. The simulated annealing based on genetic algorithm (SAGA), characterized by its rapid convergence to the global optimum, is used to cluster the sample points in the spectral mapping space. The proposed algorithm can not only reflect local and global consistency better, but also reduce the sensitivity of spectral clustering to the kernel parameter, which improves the algorithm’s clustering performance. To efficiently apply the algorithm to image segmentation, the Nystrom method is used to reduce the computation complexity. Experimental results show that compared with traditional clustering algorithms and those popular spectral clustering algorithms, the proposed algorithm can achieve better clustering performances on several synthetic datasets, texture images and real images.展开更多
Reducing the error of sensitive parameters by studying the parameters sensitivity can reduce the uncertainty of the model,while simulating double-gyre variation in Regional Ocean Modeling System(ROMS).Conditional Nonl...Reducing the error of sensitive parameters by studying the parameters sensitivity can reduce the uncertainty of the model,while simulating double-gyre variation in Regional Ocean Modeling System(ROMS).Conditional Nonlinear Optimal Perturbation related to Parameter(CNOP-P)is an effective method of studying the parameters sensitivity,which represents a type of parameter error with maximum nonlinear development at the prediction time.Intelligent algorithms have been widely applied to solving Conditional Nonlinear Optimal Perturbation(CNOP).In the paper,we proposed an improved simulated annealing(SA)algorithm to solve CNOP-P to get the optimal parameters error,studied the sensitivity of the single parameter and the combination of multiple parameters and verified the effect of reducing the error of sensitive parameters on reducing the uncertainty of model simulation.Specifically,we firstly found the non-period oscillation of kinetic energy time series of double gyre variation,then extracted two transition periods,which are respectively from high energy to low energy and from low energy to high energy.For every transition period,three parameters,respectively wind amplitude(WD),viscosity coefficient(VC)and linear bottom drag coefficient(RDRG),were studied by CNOP-P solved with SA algorithm.Finally,for sensitive parameters,their effect on model simulation is verified.Experiments results showed that the sensitivity order is WD>VC>>RDRG,the effect of the combination of multiple sensitive parameters is greater than that of single parameter superposition and the reduction of error of sensitive parameters can effectively reduce model prediction error which confirmed the importance of sensitive parameters analysis.展开更多
Genetic Algorithm (GA) is a biologically inspired technique and widely used to solve numerous combinational optimization problems. It works on a population of individuals, not just one single solution. As a result, it...Genetic Algorithm (GA) is a biologically inspired technique and widely used to solve numerous combinational optimization problems. It works on a population of individuals, not just one single solution. As a result, it avoids converging to the local optimum. However, it takes too much CPU time in the late process of GA. On the other hand, in the late process Simulated Annealing (SA) converges faster than GA but it is easily trapped to local optimum. In this letter, a useful method that unifies GA and SA is introduced, which utilizes the advantage of the global search ability of GA and fast convergence of SA. The experimental results show that the proposed algorithm outperforms GA in terms of CPU time without degradation of performance. It also achieves highly comparable placement cost compared to the state-of-the-art results obtained by Versatile Place and Route (VPR) Tool.展开更多
Simulated annealing (SA) has been a very useful stochastic method for solving problems of multidimensional global optimization that ensures convergence to a global optimum. This paper proposes a variable cooling facto...Simulated annealing (SA) has been a very useful stochastic method for solving problems of multidimensional global optimization that ensures convergence to a global optimum. This paper proposes a variable cooling factor (VCF) model for simulated annealing schedule as a new cooling scheme to determine an optimal annealing algorithm called the Powell-simulated annealing (PSA) algorithm. The PSA algorithm is aimed at speeding up the annealing process and also finding the global minima of test functions of several variables without calculating their derivatives. It has been applied and compared with the SA algorithm and Nelder and Mead Simplex (NMS) methods on Rosenbrock valleys in 2 dimensions and multiminima functions in 3, 4 and 8 dimensions. The PSA algorithm proves to be more reliable and always able to find the optimum or a point very close to it with minimal number of iterations and computational time. The VCF compares favourably with the Lundy and Mees, linear, exponential and geometric cooling schemes based on their relative cooling rates. The PSA algorithm has also been programmed to run on android smartphone systems (ASS) that facilitates the computation of combinatorial optimization problems.展开更多
The relationship between the t8/5 and micro-hardness, impact toughness in the heat affected zone (HAZ) of ASME SA213-792 at peak temperature of 1 350 ℃ was studied by thermal simulation. The result shows that the m...The relationship between the t8/5 and micro-hardness, impact toughness in the heat affected zone (HAZ) of ASME SA213-792 at peak temperature of 1 350 ℃ was studied by thermal simulation. The result shows that the micro-hardness of HAZ rises at the beginning and then decreases with increasing of t8/5 , whereas the impact toughness presents reverse trend. The distribution of precipitates in substrate has great influence on the impact toughness of HAZ. When the t8/5 is 40 s, chain-like precipitates lower the impact toughness of HAZ seriously.展开更多
We propose a method for estimating the mutual coupling coefficient among antennas in this paper which is based on the principle of signal subspace and the simulated annealing (SA) algorithm. The computer simulation ...We propose a method for estimating the mutual coupling coefficient among antennas in this paper which is based on the principle of signal subspace and the simulated annealing (SA) algorithm. The computer simulation has been conducted to illustrate the' excellent performance of this method and to demonstrate that it is statistically efficient. The benefit of this new method is that calibration signals and unknown signals can be received simultaneously, during the course of calibration.展开更多
Binary code signals have been widely used in various radars due to their simpleimplementation,but the selection of the binary codes with high comporession ratio and lowsidelobes is not solved well,because of the diffi...Binary code signals have been widely used in various radars due to their simpleimplementation,but the selection of the binary codes with high comporession ratio and lowsidelobes is not solved well,because of the difficult processing in mathmatics and expensivecalculation cost.In this paper,neural computing is introduced into the field of the selection ofbinary codes and a new method based’on simulated annealing(SA)is proposed.The experimentsshow that the proposed method is able to select the optimal binary codes with much less timecost than the known methods,furhtermore the optimization selection of the binary codes versusthe calculation cost tradeoff is easier.展开更多
Taking the Gaussian Schell-model beam as a typical example of partially coherent beams, this paper applies the simulated annealing (SA) algorithm to the design of phase plates for shaping partially coherent beams. A...Taking the Gaussian Schell-model beam as a typical example of partially coherent beams, this paper applies the simulated annealing (SA) algorithm to the design of phase plates for shaping partially coherent beams. A flow diagram is presented to illustrate the procedure of phase optimization by the SA algorithm. Numerical examples demonstrate the advantages of the SA algorithm in shaping partially coherent beams. An uniform flat-topped beam profile with maximum reconstruction error RE 〈 1.74% is achieved. A further extension of the approach is discussed.展开更多
Design for six sigma (DFSS) is a powerful approach of designing products, processes, and services with the objective of meeting the needs of customers in a cost-effective maimer. DFSS activities are classified into ...Design for six sigma (DFSS) is a powerful approach of designing products, processes, and services with the objective of meeting the needs of customers in a cost-effective maimer. DFSS activities are classified into four major phases viz. identify, design, optimize, and validate (IDOV). And an adaptive design for six sigma (ADFSS) incorporating the traits of artifidai intelligence and statistical techniques is presented. In the identify phase of the ADFSS, fuzzy relation measures between customer attributes (CAs) and engineering characteristics (ECs) as well as fuzzy correlation measures among ECs are determined with the aid of two fuzzy logic controllers (FLCs). These two measures are then used to establish the cumulative impact factor for ECs. In the next phase ( i. e. design phase), a transfer function is developed with the aid of robust multiple nonlinear regression analysis. Furthermore, 1this transfer function is optimized with the simulated annealing ( SA ) algorithm in the optimize phase. In the validate phase, t-test is conducted for the validation of the design resulted in earlier phase. Finally, a case study of a hypothetical writing instrument is simulated to test the efficacy of the proposed ADFSS.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.50375023)
文摘This paper establishes a mathematical model of multi-objective optimization with behavior constraints in solid space based on the problem of optimal design of hydraulic manifold blocks (HMB). Due to the limitation of its local search ability of genetic algorithm (GA) in solving a massive combinatorial optimization problem, simulated annealing (SA) is combined, the multi-parameter concatenated coding is adopted, and the memory function is added. Thus a hybrid genetic-simulated annealing with memory function is formed. Examples show that the modified algorithm can improve the local search ability in the solution space, and the solution quality.
基金supported by the National Natural Science Foundationof China(61272119)
文摘The similarity measure is crucial to the performance of spectral clustering. The Gaussian kernel function based on the Euclidean distance is usual y adopted as the similarity measure. However, the Euclidean distance measure cannot ful y reveal the complex distribution data, and the result of spectral clustering is very sensitive to the scaling parameter. To solve these problems, a new manifold distance measure and a novel simulated anneal-ing spectral clustering (SASC) algorithm based on the manifold distance measure are proposed. The simulated annealing based on genetic algorithm (SAGA), characterized by its rapid convergence to the global optimum, is used to cluster the sample points in the spectral mapping space. The proposed algorithm can not only reflect local and global consistency better, but also reduce the sensitivity of spectral clustering to the kernel parameter, which improves the algorithm’s clustering performance. To efficiently apply the algorithm to image segmentation, the Nystrom method is used to reduce the computation complexity. Experimental results show that compared with traditional clustering algorithms and those popular spectral clustering algorithms, the proposed algorithm can achieve better clustering performances on several synthetic datasets, texture images and real images.
基金Supported by the National Natural Science Foundation of China(No.41405097)the Fundamental Research Funds for the Central Universities of China in 2017
文摘Reducing the error of sensitive parameters by studying the parameters sensitivity can reduce the uncertainty of the model,while simulating double-gyre variation in Regional Ocean Modeling System(ROMS).Conditional Nonlinear Optimal Perturbation related to Parameter(CNOP-P)is an effective method of studying the parameters sensitivity,which represents a type of parameter error with maximum nonlinear development at the prediction time.Intelligent algorithms have been widely applied to solving Conditional Nonlinear Optimal Perturbation(CNOP).In the paper,we proposed an improved simulated annealing(SA)algorithm to solve CNOP-P to get the optimal parameters error,studied the sensitivity of the single parameter and the combination of multiple parameters and verified the effect of reducing the error of sensitive parameters on reducing the uncertainty of model simulation.Specifically,we firstly found the non-period oscillation of kinetic energy time series of double gyre variation,then extracted two transition periods,which are respectively from high energy to low energy and from low energy to high energy.For every transition period,three parameters,respectively wind amplitude(WD),viscosity coefficient(VC)and linear bottom drag coefficient(RDRG),were studied by CNOP-P solved with SA algorithm.Finally,for sensitive parameters,their effect on model simulation is verified.Experiments results showed that the sensitivity order is WD>VC>>RDRG,the effect of the combination of multiple sensitive parameters is greater than that of single parameter superposition and the reduction of error of sensitive parameters can effectively reduce model prediction error which confirmed the importance of sensitive parameters analysis.
基金Supported by School of Engineering, Napier University, United Kingdom, and partially supported by the National Natural Science Foundation of China (No.60273093).
文摘Genetic Algorithm (GA) is a biologically inspired technique and widely used to solve numerous combinational optimization problems. It works on a population of individuals, not just one single solution. As a result, it avoids converging to the local optimum. However, it takes too much CPU time in the late process of GA. On the other hand, in the late process Simulated Annealing (SA) converges faster than GA but it is easily trapped to local optimum. In this letter, a useful method that unifies GA and SA is introduced, which utilizes the advantage of the global search ability of GA and fast convergence of SA. The experimental results show that the proposed algorithm outperforms GA in terms of CPU time without degradation of performance. It also achieves highly comparable placement cost compared to the state-of-the-art results obtained by Versatile Place and Route (VPR) Tool.
文摘Simulated annealing (SA) has been a very useful stochastic method for solving problems of multidimensional global optimization that ensures convergence to a global optimum. This paper proposes a variable cooling factor (VCF) model for simulated annealing schedule as a new cooling scheme to determine an optimal annealing algorithm called the Powell-simulated annealing (PSA) algorithm. The PSA algorithm is aimed at speeding up the annealing process and also finding the global minima of test functions of several variables without calculating their derivatives. It has been applied and compared with the SA algorithm and Nelder and Mead Simplex (NMS) methods on Rosenbrock valleys in 2 dimensions and multiminima functions in 3, 4 and 8 dimensions. The PSA algorithm proves to be more reliable and always able to find the optimum or a point very close to it with minimal number of iterations and computational time. The VCF compares favourably with the Lundy and Mees, linear, exponential and geometric cooling schemes based on their relative cooling rates. The PSA algorithm has also been programmed to run on android smartphone systems (ASS) that facilitates the computation of combinatorial optimization problems.
文摘The relationship between the t8/5 and micro-hardness, impact toughness in the heat affected zone (HAZ) of ASME SA213-792 at peak temperature of 1 350 ℃ was studied by thermal simulation. The result shows that the micro-hardness of HAZ rises at the beginning and then decreases with increasing of t8/5 , whereas the impact toughness presents reverse trend. The distribution of precipitates in substrate has great influence on the impact toughness of HAZ. When the t8/5 is 40 s, chain-like precipitates lower the impact toughness of HAZ seriously.
基金Supported by the 863 High Technology Project ofChina (2001AA631050)
文摘We propose a method for estimating the mutual coupling coefficient among antennas in this paper which is based on the principle of signal subspace and the simulated annealing (SA) algorithm. The computer simulation has been conducted to illustrate the' excellent performance of this method and to demonstrate that it is statistically efficient. The benefit of this new method is that calibration signals and unknown signals can be received simultaneously, during the course of calibration.
文摘Binary code signals have been widely used in various radars due to their simpleimplementation,but the selection of the binary codes with high comporession ratio and lowsidelobes is not solved well,because of the difficult processing in mathmatics and expensivecalculation cost.In this paper,neural computing is introduced into the field of the selection ofbinary codes and a new method based’on simulated annealing(SA)is proposed.The experimentsshow that the proposed method is able to select the optimal binary codes with much less timecost than the known methods,furhtermore the optimization selection of the binary codes versusthe calculation cost tradeoff is easier.
基金supported by the National Natural Science Foundation of China (Grant No 10574097)
文摘Taking the Gaussian Schell-model beam as a typical example of partially coherent beams, this paper applies the simulated annealing (SA) algorithm to the design of phase plates for shaping partially coherent beams. A flow diagram is presented to illustrate the procedure of phase optimization by the SA algorithm. Numerical examples demonstrate the advantages of the SA algorithm in shaping partially coherent beams. An uniform flat-topped beam profile with maximum reconstruction error RE 〈 1.74% is achieved. A further extension of the approach is discussed.
基金Shanghai Leading Academic Discipline Project,China(No.B602)
文摘Design for six sigma (DFSS) is a powerful approach of designing products, processes, and services with the objective of meeting the needs of customers in a cost-effective maimer. DFSS activities are classified into four major phases viz. identify, design, optimize, and validate (IDOV). And an adaptive design for six sigma (ADFSS) incorporating the traits of artifidai intelligence and statistical techniques is presented. In the identify phase of the ADFSS, fuzzy relation measures between customer attributes (CAs) and engineering characteristics (ECs) as well as fuzzy correlation measures among ECs are determined with the aid of two fuzzy logic controllers (FLCs). These two measures are then used to establish the cumulative impact factor for ECs. In the next phase ( i. e. design phase), a transfer function is developed with the aid of robust multiple nonlinear regression analysis. Furthermore, 1this transfer function is optimized with the simulated annealing ( SA ) algorithm in the optimize phase. In the validate phase, t-test is conducted for the validation of the design resulted in earlier phase. Finally, a case study of a hypothetical writing instrument is simulated to test the efficacy of the proposed ADFSS.