In order to improve the efficiency and safety of search and rescue(SAR)at sea,this paper proposes a kind of emergency rapid rescue unmanned craft(air-dropped unmanned maritime motorized search and rescue platform)that...In order to improve the efficiency and safety of search and rescue(SAR)at sea,this paper proposes a kind of emergency rapid rescue unmanned craft(air-dropped unmanned maritime motorized search and rescue platform)that can be delivered by a large transport aircraft.This paper studies the structural design scheme of the platform,and the main scale of the platform,the choice of power system and the impact resistance performance are considered in the design process to ensure its rapid response and effective rescue capability under complex sea conditions.Simulation results show that the platform can withstand the impact of air injection into the water and the shipboard equipment can operate normally under the impact load,thus verifying the feasibility and safety of the design.This study serves to improve the maritime search and rescue system and enhance the oceanic emergency response capability.展开更多
During the 100%front impact,all the parts of front car will participate in the course;the crash stiffness of bodywork will also reach the peak.During the crash,rational structure of bodywork can resist the distortion,...During the 100%front impact,all the parts of front car will participate in the course;the crash stiffness of bodywork will also reach the peak.During the crash,rational structure of bodywork can resist the distortion,absorb more energy and get better mode of distortion and low deceleration rate,so as to meet the performance of crash safety.The paper mainly makes optimization analysis based on the problems of front side rails,subframe,firewall,and optimization cases are confirmed which can decrease the intrusion and deceleration rate of the whole car.The structure of bodywork after optimization can meet the performance of crash safety.展开更多
Ice causes impact damage to different positions of the compressor blade,destroys the structural integrity of the rotor structure,and then causes unbalanced failure and even causes nonlinear vibration accidents such as...Ice causes impact damage to different positions of the compressor blade,destroys the structural integrity of the rotor structure,and then causes unbalanced failure and even causes nonlinear vibration accidents such as collision and friction,which affects the execution of helicopter tasks.To investigate the influence of impact position on the damage form and dynamic response of blades during ice impact,a dynamic model by finite element-smooth particle fluid dynamic coupling method is created.The ice impact damage experiment of the TC4 plate based on the air gun experimental platform was carried out to verify the reliability of the simulation model.The damage of compressor blades impacted by ice from different positions under static and design speed of 45000 r/min is analyzed.The research results indicate that under static conditions,the damage caused by ice impact from the leading edge blade tip to the leading edge blade root first increases and then decreases,with the maximum damage occurring at the 66.7%blade height position on the leading edge.At the design speed,the closer the impact locations are to the leaf tip,the greater the damage is,and the plastic damage,equivalent stress,and kinetic energy loss of the ice impact are lower than the blade static condition.The research conclusion can provide theoretical reference and data support for the design of structural strength and protection of compressor blades in turboshaft engines.展开更多
文摘In order to improve the efficiency and safety of search and rescue(SAR)at sea,this paper proposes a kind of emergency rapid rescue unmanned craft(air-dropped unmanned maritime motorized search and rescue platform)that can be delivered by a large transport aircraft.This paper studies the structural design scheme of the platform,and the main scale of the platform,the choice of power system and the impact resistance performance are considered in the design process to ensure its rapid response and effective rescue capability under complex sea conditions.Simulation results show that the platform can withstand the impact of air injection into the water and the shipboard equipment can operate normally under the impact load,thus verifying the feasibility and safety of the design.This study serves to improve the maritime search and rescue system and enhance the oceanic emergency response capability.
基金"Twelfth Five-year Plan"for Sci & Tech Research of China(No.2011BAG03B02No.2011BAG03B06)
文摘During the 100%front impact,all the parts of front car will participate in the course;the crash stiffness of bodywork will also reach the peak.During the crash,rational structure of bodywork can resist the distortion,absorb more energy and get better mode of distortion and low deceleration rate,so as to meet the performance of crash safety.The paper mainly makes optimization analysis based on the problems of front side rails,subframe,firewall,and optimization cases are confirmed which can decrease the intrusion and deceleration rate of the whole car.The structure of bodywork after optimization can meet the performance of crash safety.
基金supported by the National Natural Science Foundation of China(Grant Nos.52175091 and 52075165)the National Natural Science Foundation of Hunan Province(Grant No.2023JJ30247)+1 种基金the Key Research and Development Program of Hunan Province(Grant No.2022GK2023)the AECC Independent Innovation Special Foundation(Grant No.KY-1003-2021-0019).
文摘Ice causes impact damage to different positions of the compressor blade,destroys the structural integrity of the rotor structure,and then causes unbalanced failure and even causes nonlinear vibration accidents such as collision and friction,which affects the execution of helicopter tasks.To investigate the influence of impact position on the damage form and dynamic response of blades during ice impact,a dynamic model by finite element-smooth particle fluid dynamic coupling method is created.The ice impact damage experiment of the TC4 plate based on the air gun experimental platform was carried out to verify the reliability of the simulation model.The damage of compressor blades impacted by ice from different positions under static and design speed of 45000 r/min is analyzed.The research results indicate that under static conditions,the damage caused by ice impact from the leading edge blade tip to the leading edge blade root first increases and then decreases,with the maximum damage occurring at the 66.7%blade height position on the leading edge.At the design speed,the closer the impact locations are to the leaf tip,the greater the damage is,and the plastic damage,equivalent stress,and kinetic energy loss of the ice impact are lower than the blade static condition.The research conclusion can provide theoretical reference and data support for the design of structural strength and protection of compressor blades in turboshaft engines.