In this study, strength softening models are developed for exploring rainfall-induced landslide mechanism based on Mohr Coulomb strength theory with both saturation degree and temporal evolution into consideration. Ac...In this study, strength softening models are developed for exploring rainfall-induced landslide mechanism based on Mohr Coulomb strength theory with both saturation degree and temporal evolution into consideration. According to the ratio of two time scales available, the model can be classified into three categories, i.e., instant softening model, delay softening model, and coupling softening model. Corresponding evolution functions are specified to represent these kinds of softening processes and then applied to simulate landslide of homogeneous slopes triggered by rainfall, therefrom, useful conclusions can be drawn in the end.展开更多
Rainfall is one of the most important factors contributing to landslides, and gentle bedding incline, high-rainfall induced landslides are common throughout the world. Field observations and theoretical analyses have ...Rainfall is one of the most important factors contributing to landslides, and gentle bedding incline, high-rainfall induced landslides are common throughout the world. Field observations and theoretical analyses have been used to assess slope instability caused by permeability variation. In this study, the influence of rainfall infiltration on gentle bedding incline slope behaviour was investigated using a centrifuge physical simulation test. The magnitude, pattern and development of pore water and earth pressure at the interface;the shear failure surface features;and the corresponding deformation and failure processes were considered. A model with interbedded sand and mud was created, and a centrifuge was used to simulate both natural and rainfall conditions. The weak intercalation was composed of single-material silty clay, and the landslide mass was composed of red-bed sandstone. A combination of photography, pore water pressure measurements and earth pressure measurements were used to examine the relationship between the pore water pressure, earth pressure and failure modes. When the slope experiences overall instability, the curves of the earth pressure and pore water pressure dramatically decrease. The results reveal that the failure shear surface largely depends on the differential creep caused by the properties of the rock mass and the rainfall infiltration.展开更多
Using physical simulation models, rainfall-induced landslides have been simulated under various rainfall intensities. During these simulations, we have monitored the physical and mechanical behaviors of the landslide ...Using physical simulation models, rainfall-induced landslides have been simulated under various rainfall intensities. During these simulations, we have monitored the physical and mechanical behaviors of the landslide over the slip surface at different heights of the model slopes, as well as taking the whole slope to identify its deformation and failure processes. The results show that the rainfall duration corresponding to the initiation of the debris landslide and is exponentially related to rainfall intensity. Corresponding to the three intervals of the rainfall intensity, there are three types of slope failure modes:(1) the small-slump failure at the leading edge of the slope;(2) the block-slump failure but sometimes there are large blocks sliding down;and(3) the bulk failure but sometimes there is the block-slump failure. Based on the total rainfall-lasting time and the associated proportion of failed mass volume, the early warning of debris landslide can be classified into five grades, i.e., red, orange to red, orange, yellow to orange and yellow, which correspond to the five slope failure modes, respectively.展开更多
On 4 April 2013,a 1.5 million cubic meter landslide occurred in Sunjia Town,Wanzhou County,Three Gorges Reservoir,China.After initiation,the Sunjia landslide traveled about 30 m toward the northeast and destroyed most...On 4 April 2013,a 1.5 million cubic meter landslide occurred in Sunjia Town,Wanzhou County,Three Gorges Reservoir,China.After initiation,the Sunjia landslide traveled about 30 m toward the northeast and destroyed most of the infrastructure in its path.The landslide was triggered by heavy rainfall and previous slope excavations,but this slope also displayed a complicated failure process:the overlying earth slope first deformed and then induced sliding along underlying rock surfaces.Surface displacements that resulted from continuous creeping of the post-event slope were observed by an emergency monitoring system that revealed the disequilibrium state of the slope.To discuss the stability and future movements of the remaining unstable debris deposits,we developed a geotechnical model of the post-slide slope,calculated how it can slide again in an extreme rainfall scenario,and estimated the potential runout distance using the Tsunami Squares method.We then estimated the number of people and the value of the infrastructure threatened by this potential landslide.Lastly,we analyzed the vulnerability of elements at risk and quantitatively evaluated the hazard risk associated with the most dangerous scenario.This quantitative risk analysis provides a better understanding of,and technical routes for,hazard mitigation of rainfallinduced complex landslides.展开更多
Based on analysis and simulation,the interaction of thermal forcing between the Tibetan Plateau(TP) and Iranian Plateau(IP) in summer is investigated.Associated influences on water vapor transport in the Asian subtrop...Based on analysis and simulation,the interaction of thermal forcing between the Tibetan Plateau(TP) and Iranian Plateau(IP) in summer is investigated.Associated influences on water vapor transport in the Asian subtropical monsoon region and the formation of a cold center in the lower stratosphere over Eurasia are also investigated.Results show that surface sensible heating(SH) over the two plateaus not only have mutual influences but also feedback to each other.SH over the IP can reduce the SH and increase the LH over the TP,whereas the SH over the TP can increase surface heating over the IP,thereby reaching quasi-equilibrium among the SH and LH over the TP,IP SH and atmosphere vertical motion.Therefore,the so-called Tibetan-Iranian Plateau coupling system(TIPS) is constructed,which influences atmosphere circulation.In the TIPS system,interaction between surface SH and LH over the TP plays a leading role.SH of the IP and TP influences on other regions not only have superimposed effects but also mutually offset.Accounting for contributions to the convergence of water vapor transport in the Asian subtropical monsoon region,TP SH contributes more than twice that of the IP.The combined influence of SH over TP and IP represents the major contribution to the convergence of water vapor transport in that region.In addition,the heating effect of TIPS increases the upper tropospheric temperature maximum and lifts the tropopause,cooling the lower stratosphere.Combined with large-scale thermal forcing of the Eurasian continent,the TIPS produces a strong anticyclonic circulation and the South Asian High that warms the upper troposphere and cools the lower stratosphere,thereby affecting regional and global weather and climate.展开更多
基金supported by the National Natural Science Funds of China (10932012)
文摘In this study, strength softening models are developed for exploring rainfall-induced landslide mechanism based on Mohr Coulomb strength theory with both saturation degree and temporal evolution into consideration. According to the ratio of two time scales available, the model can be classified into three categories, i.e., instant softening model, delay softening model, and coupling softening model. Corresponding evolution functions are specified to represent these kinds of softening processes and then applied to simulate landslide of homogeneous slopes triggered by rainfall, therefrom, useful conclusions can be drawn in the end.
文摘Rainfall is one of the most important factors contributing to landslides, and gentle bedding incline, high-rainfall induced landslides are common throughout the world. Field observations and theoretical analyses have been used to assess slope instability caused by permeability variation. In this study, the influence of rainfall infiltration on gentle bedding incline slope behaviour was investigated using a centrifuge physical simulation test. The magnitude, pattern and development of pore water and earth pressure at the interface;the shear failure surface features;and the corresponding deformation and failure processes were considered. A model with interbedded sand and mud was created, and a centrifuge was used to simulate both natural and rainfall conditions. The weak intercalation was composed of single-material silty clay, and the landslide mass was composed of red-bed sandstone. A combination of photography, pore water pressure measurements and earth pressure measurements were used to examine the relationship between the pore water pressure, earth pressure and failure modes. When the slope experiences overall instability, the curves of the earth pressure and pore water pressure dramatically decrease. The results reveal that the failure shear surface largely depends on the differential creep caused by the properties of the rock mass and the rainfall infiltration.
基金This research is financially supported by the National Natural Science Foundation of China(Nos.41807274,41630640)the Sichuan Science and Technology Program(No.2019E0R2230230)the Scientific Foundation of the Chinese Academy of Sciences(No.KFJ-STS-QYZD-172)。
文摘Using physical simulation models, rainfall-induced landslides have been simulated under various rainfall intensities. During these simulations, we have monitored the physical and mechanical behaviors of the landslide over the slip surface at different heights of the model slopes, as well as taking the whole slope to identify its deformation and failure processes. The results show that the rainfall duration corresponding to the initiation of the debris landslide and is exponentially related to rainfall intensity. Corresponding to the three intervals of the rainfall intensity, there are three types of slope failure modes:(1) the small-slump failure at the leading edge of the slope;(2) the block-slump failure but sometimes there are large blocks sliding down;and(3) the bulk failure but sometimes there is the block-slump failure. Based on the total rainfall-lasting time and the associated proportion of failed mass volume, the early warning of debris landslide can be classified into five grades, i.e., red, orange to red, orange, yellow to orange and yellow, which correspond to the five slope failure modes, respectively.
基金supported by the National Natural Science Foundation of China(Grant Numbers 41907234 and 41907237)the Natural Science Foundation of Shaanxi Province(Grant Number 2017JQ4010 and 2018JQ4041)+1 种基金the Postdoctoral Research Foundation of China(Grant Number 2017M613033)the Fundamental Research Funds for the Central Universities,(Grant Numbers 300102210215,300102210210,300102219107 and 300102219104)。
文摘On 4 April 2013,a 1.5 million cubic meter landslide occurred in Sunjia Town,Wanzhou County,Three Gorges Reservoir,China.After initiation,the Sunjia landslide traveled about 30 m toward the northeast and destroyed most of the infrastructure in its path.The landslide was triggered by heavy rainfall and previous slope excavations,but this slope also displayed a complicated failure process:the overlying earth slope first deformed and then induced sliding along underlying rock surfaces.Surface displacements that resulted from continuous creeping of the post-event slope were observed by an emergency monitoring system that revealed the disequilibrium state of the slope.To discuss the stability and future movements of the remaining unstable debris deposits,we developed a geotechnical model of the post-slide slope,calculated how it can slide again in an extreme rainfall scenario,and estimated the potential runout distance using the Tsunami Squares method.We then estimated the number of people and the value of the infrastructure threatened by this potential landslide.Lastly,we analyzed the vulnerability of elements at risk and quantitatively evaluated the hazard risk associated with the most dangerous scenario.This quantitative risk analysis provides a better understanding of,and technical routes for,hazard mitigation of rainfallinduced complex landslides.
基金supported by the National Natural Science Foundation of China(Grant Nos.91437219&91637312)the Special Fund for Public Welfare Industry(Meteorology)administered by the Chinese Ministry of Finance and the Ministry of Science and Technology(Grant No.GYHY201406001)+2 种基金the China Postdoctoral Science Foundation(Grant No.2016M600695)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDY-SSWDQC018)the Special Program for Applied Research on Super Computation of the National Natural Science Foundation of China-Guangdong Joint Fund(The Second Phase)
文摘Based on analysis and simulation,the interaction of thermal forcing between the Tibetan Plateau(TP) and Iranian Plateau(IP) in summer is investigated.Associated influences on water vapor transport in the Asian subtropical monsoon region and the formation of a cold center in the lower stratosphere over Eurasia are also investigated.Results show that surface sensible heating(SH) over the two plateaus not only have mutual influences but also feedback to each other.SH over the IP can reduce the SH and increase the LH over the TP,whereas the SH over the TP can increase surface heating over the IP,thereby reaching quasi-equilibrium among the SH and LH over the TP,IP SH and atmosphere vertical motion.Therefore,the so-called Tibetan-Iranian Plateau coupling system(TIPS) is constructed,which influences atmosphere circulation.In the TIPS system,interaction between surface SH and LH over the TP plays a leading role.SH of the IP and TP influences on other regions not only have superimposed effects but also mutually offset.Accounting for contributions to the convergence of water vapor transport in the Asian subtropical monsoon region,TP SH contributes more than twice that of the IP.The combined influence of SH over TP and IP represents the major contribution to the convergence of water vapor transport in that region.In addition,the heating effect of TIPS increases the upper tropospheric temperature maximum and lifts the tropopause,cooling the lower stratosphere.Combined with large-scale thermal forcing of the Eurasian continent,the TIPS produces a strong anticyclonic circulation and the South Asian High that warms the upper troposphere and cools the lower stratosphere,thereby affecting regional and global weather and climate.