The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this wo...The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.展开更多
The application of computer simulation technique to electronic controlled fuel injection(EFI) engine was studied to increase the development speed and improve the overall performance of the engine and car. On the bas...The application of computer simulation technique to electronic controlled fuel injection(EFI) engine was studied to increase the development speed and improve the overall performance of the engine and car. On the basis of an EFI system developed by ourselves, the simulation model of the initial control data and engine operation points during a driving cycle and the car performance pridiction model were established. This method was applied to a mini car. The experiment showed that the simulated control data has good accuracy; and the engine test points and car performances obtained by simulation are useful for the matching of EFI system with gasoline engine and the development speed is increased.展开更多
This paper used EAM and static relaxation method to simulate the grain boundary segregation behavior of Mg in Ni-based superalloys. The results offer a better understanding in the strengthening mechanism of Mg additio...This paper used EAM and static relaxation method to simulate the grain boundary segregation behavior of Mg in Ni-based superalloys. The results offer a better understanding in the strengthening mechanism of Mg addition in superalloys. The segregation of Mg increases the grain boundary cohesive bond and the vacancy formation energy, and decreases the mobility of grain boundary dislocation. It results in the retardation of creep voids initiation and growth.展开更多
A major motivation for this work is to investigate a method of computer simulation for compensating fixed pattern noise of the infrared focal plane arrays. A mathematical model of the output signal of focal plane arra...A major motivation for this work is to investigate a method of computer simulation for compensating fixed pattern noise of the infrared focal plane arrays. A mathematical model of the output signal of focal plane array was established; a compensating algorithm utilizing reference source was derived and simulating programs were designed. The images of compensating process verify the influence of nonuniformity of responsibility and offset on fixed pattern noise. The result show that simulating method of investigating compensation technology for focal plane arrays is feasible, the generated images and methods can be used to the study of image recognition.展开更多
Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging ...Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging allows investigation of the large-scale magnetopause by providing a two-dimensional(2-D)global view from a satellite.By performing 3-D global hybrid-particle-in-cell(hybrid-PIC)simulations,we obtain soft X-ray images of Earth’s magnetopause under different solar wind conditions,such as different plasma densities and directions of the southward interplanetary magnetic field.In all cases,magnetic reconnection occurs at low latitude magnetopause.The soft X-ray images observed by a hypothetical satellite are shown,with all of the following identified:the boundary of the magnetopause,the cusps,and the magnetosheath.Local X-ray emissivity in the magnetosheath is characterized by large amplitude fluctuations(up to 160%);however,the maximum line-of-sight-integrated X-ray intensity matches the tangent directions of the magnetopause well,indicating that these fluctuations have limited impact on identifying the magnetopause boundary in the X-ray images.Moreover,the magnetopause boundary can be identified using multiple viewing geometries.We also find that solar wind conditions have little effect on the magnetopause identification.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will provide X-ray images of the magnetopause for the first time,and our global hybrid-PIC simulation results can help better understand the 2-D X-ray images of the magnetopause from a 3-D perspective,with particle kinetic effects considered.展开更多
Solar wind charge exchange produces emissions in the soft X-ray energy range which can enable the study of near-Earth space regions such as the magnetopause,the magnetosheath and the polar cusps by remote sensing tech...Solar wind charge exchange produces emissions in the soft X-ray energy range which can enable the study of near-Earth space regions such as the magnetopause,the magnetosheath and the polar cusps by remote sensing techniques.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)and Lunar Environment heliospheric X-ray Imager(LEXI)missions aim to obtain soft Xray images of near-Earth space thanks to their Soft X-ray Imager(SXI)instruments.While earlier modeling works have already simulated soft X-ray images as might be obtained by SMILE SXI during its mission,the numerical models used so far are all based on the magnetohydrodynamics description of the space plasma.To investigate the possible signatures of ion-kinetic-scale processes in soft Xray images,we use for the first time a global hybrid-Vlasov simulation of the geospace from the Vlasiator model.The simulation is driven by fast and tenuous solar wind conditions and purely southward interplanetary magnetic field.We first produce global X-ray images of the dayside near-Earth space by placing a virtual imaging satellite at two different locations,providing meridional and equatorial views.We then analyze regional features present in the images and show that they correspond to signatures in soft X-ray emissions of mirrormode wave structures in the magnetosheath and flux transfer events(FTEs)at the magnetopause.Our results suggest that,although the time scales associated with the motion of those transient phenomena will likely be significantly smaller than the integration time of the SMILE and LEXI imagers,mirror-mode structures and FTEs can cumulatively produce detectable signatures in the soft X-ray images.For instance,a local increase by 30%in the proton density at the dayside magnetopause resulting from the transit of multiple FTEs leads to a 12%enhancement in the line-of-sight-and time-integrated soft X-ray emissivity originating from this region.Likewise,a proton density increase by 14%in the magnetosheath associated with mirror-mode structures can result in an enhancement in the soft X-ray signal by 4%.These are likely conservative estimates,given that the solar wind conditions used in the Vlasiator run can be expected to generate weaker soft X-ray emissions than the more common denser solar wind.These results will contribute to the preparatory work for the SMILE and LEXI missions by providing the community with quantitative estimates of the effects of small-scale,transient phenomena occurring on the dayside.展开更多
Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes d...Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes delineated by explicit optical characteristics,Monte Carlo simulations possess the theoretical capacity to render unparalleled accuracy in the depiction of exceedingly intricate phenomena.Nonetheless,the quintessential challenge associated with Monte Carlo simulation methodologies resides in their extended computational duration,which significantly impedes the refinement of their precision.Consequently,this discourse is specifically dedicated to exploring innovations in strategies and technologies aimed at expediting Monte Carlo simulations.It delves into the foundational concepts of various acceleration tactics,evaluates these strategies concerning their speed,accuracy,and practicality,and amalgamates a comprehensive overview and critique of acceleration methodologies for Monte Carlo simulations.Ultimately,the discourse envisages prospective trajectories for the employment of Monte Carlo techniques within the domain of tissue optics.展开更多
The variations of the frontogenetic trend of a cold filament induced by the cross-filament wind and wave fields are studied by a non-hydrostatic large eddy simulation. Five cases with different strengths of wind and w...The variations of the frontogenetic trend of a cold filament induced by the cross-filament wind and wave fields are studied by a non-hydrostatic large eddy simulation. Five cases with different strengths of wind and wave fields are studied.The results show that the intense wind and wave fields further break the symmetries of submesoscale flow fields and suppress the levels of filament frontogenesis. The changes of secondary circulation directions—that is, the conversion between the convergence and divergence of the surface cross-filament currents with the downwelling and upwelling jets in the filament center—are associated with the inertial oscillation. The filament frontogenesis and frontolysis caused by the changes of secondary circulation directions may periodically sharpen and smooth the gradient of submesoscale flow fields.The lifecycle of the cold filament may include multiple stages of filament frontogenesis and frontolysis.展开更多
Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of poros...Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock.展开更多
To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simu...To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simulations carried out by the Norwegian Earth System Model with a coupled atmosphere–land surface model, forced by seasonal sea ice conditions from preindustrial, present-day, and future periods. Each ensemble member within the same set uses the same forcing but with small perturbations to the atmospheric initial state. Hence, the difference between the present-day(or future) ensemble mean and the preindustrial ensemble mean provides the ice-loss-induced response, while the difference of the individual members within the present-day(or future) set is the effect of atmospheric internal variability. Results indicate that both present-day and future sea ice loss can force a negative phase of the Arctic Oscillation with a WACE pattern in winter. The magnitude of ice-induced Arctic warming is over four(ten) times larger than the ice-induced East Asian cooling in the present-day(future) experiment;the latter having a magnitude that is about 30% of the observed cooling. Sea ice loss contributes about 60%(80%) to the Arctic winter warming in the present-day(future) experiment. Atmospheric internal variability can also induce a WACE pattern with comparable magnitudes between the Arctic and East Asia. Ice-lossinduced East Asian cooling can easily be masked by atmospheric internal variability effects because random atmospheric internal variability may induce a larger magnitude warming. The observed WACE pattern occurs as a result of both Arctic sea ice loss and atmospheric internal variability, with the former dominating Arctic warming and the latter dominating East Asian cooling.展开更多
The Very Large Area gamma-ray Space Telescope(VLAST)is a mission concept proposed to detect gamma-ray photons through both Compton scattering and electron–positron pair production mechanisms,thus enabling the detecti...The Very Large Area gamma-ray Space Telescope(VLAST)is a mission concept proposed to detect gamma-ray photons through both Compton scattering and electron–positron pair production mechanisms,thus enabling the detection of photons with energies ranging from MeV to TeV.This project aims to conduct a comprehensive survey of the gamma-ray sky from a low-Earth orbit using an anti-coincidence detector,a tracker detector that also serves as a low-energy calorimeter,and a high-energy imaging calorimeter.We developed a Monte Carlo simulation application of the detector using the GEANT4 toolkit to evaluate the instrument performance,including the effective area,angular resolution,and energy resolution,and explored specific optimizations of the detector configuration.Our simulation-based analysis indicates that the current design of the VLAST is physically feasible,with an acceptance above 10 m^(2)sr which is four times larger than that of the Fermi-LAT,an energy resolution better than 2%at 10 GeV,and an angular resolution better than 0.2◦at 10 GeV.The VLAST project promises to make significant contributions to the field of gamma-ray astronomy and enhance our understanding of the cosmos.展开更多
Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the eff...Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events.展开更多
A chemo-mechanical model is developed to investigate the effects on the stress development of the coating of polycrystalline Ni-rich LiNixMnyCo_(z)O_(2)(x≥0.8)(NMC)particles with poly(3,4-ethylenedioxythiophene)(PEDO...A chemo-mechanical model is developed to investigate the effects on the stress development of the coating of polycrystalline Ni-rich LiNixMnyCo_(z)O_(2)(x≥0.8)(NMC)particles with poly(3,4-ethylenedioxythiophene)(PEDOT).The simulation results show that the coating of primary NMC particles significantly reduces the stress generation by efficiently accommodating the volume change associated with the lithium diffusion,and the coating layer plays roles both as a cushion against the volume change and a channel for the lithium transport,promoting the lithium distribution across the secondary particles more homogeneously.Besides,the lower stiffness,higher ionic conductivity,and larger thickness of the coating layer improve the stress mitigation.This paper provides a mathematical framework for calculating the chemo-mechanical responses of anisotropic electrode materials and fundamental insights into how the coating of NMC active particles mitigates stress levels.展开更多
In this paper, a modified temperature-phase transformation-stress/strain field coupled 3D non-linear mathematical model was used in the computer simulation on heat treatment processes of workpieces including catch jaw...In this paper, a modified temperature-phase transformation-stress/strain field coupled 3D non-linear mathematical model was used in the computer simulation on heat treatment processes of workpieces including catch jaw, anchor ring, cold roller, large-scale bearing roller, nitriding crank shaft, etc. The simulation on complicated technologies such as pre-cooled quenching, double media quenching, self-tempering, difference temperature heating, nitriding distortion was carried out. The optimum design of heat treatment technology has been realized. The successful application of computer simulation on heat treatment have also been demonstrated.展开更多
The 3D FEM numerical simulation on multi-action precision cold forging technology of universal joint cross and differential spider is done in this article using DEFORM Software, a commercial computer aided engineering...The 3D FEM numerical simulation on multi-action precision cold forging technology of universal joint cross and differential spider is done in this article using DEFORM Software, a commercial computer aided engineering software specializing in forming and heat treatment simulation technology, and suitable for cold, warm and hot forging process. The material flow properties, the dynamic variation of stress and strain in the process of deformation and the load-stroke curve have also been achieved. A good consistency is exhibited between simulation results and practical data. Based on the DEFORM simulation results, the optimized procedure has been found for forging a universal joint cross. What should be emphasized here is that a better understanding of practical forging characters and the environmental factors can greatly improve the simulation accuracy thus make the simulation results more reliable.展开更多
It was found that rare earth influenced per process of permeation layer forming, and that the tooth of layer was thinner, thicker, straighter and longer by observing permeation layers at different holding times.It was...It was found that rare earth influenced per process of permeation layer forming, and that the tooth of layer was thinner, thicker, straighter and longer by observing permeation layers at different holding times.It was so image, lifelike and audio-visual by computer kinetic simulation that the layer forming could be continuously observed. Because it con forms to reality, the computer kinetic simulation can forecast the layer thickness and it will offer a reasonable permeating technology.展开更多
Based on the existing component models in the Pspice software package, a combined model for Insulat- ed the Bipolar Transistor (IGBT) is established, in which a non - linear is introduced to represent the parasitic ...Based on the existing component models in the Pspice software package, a combined model for Insulat- ed the Bipolar Transistor (IGBT) is established, in which a non - linear is introduced to represent the parasitic capacitance. Using this model, computerized simulation is conducted for the FB - ZVZCS - PWM soft - ewitching converter,the switching and energy-transferring characteristics of the components are analyzed.The simulation results are testified by experiments.It is proved that by abopting appropriate models,computerized simulation becomes an effective tool for investigation of arc welding inverter power source.展开更多
A computer software to simulate the phase transformation during quenching is designed based on Avrami equation and Scheil additivity principle of incubation period. The isothermal transformation diagrams of supercool...A computer software to simulate the phase transformation during quenching is designed based on Avrami equation and Scheil additivity principle of incubation period. The isothermal transformation diagrams of supercooled austenite are described by cubic spline functions. This software is possess of a good graphic interface of Windows style, can simulate the whole process in austenite decomposition during continuous cooling. If the cooling rate was given, the fraction of various microstructures transformed of austenite decomposition during continuous cooling at any temperature can be calculated. The simulation results are checked with the quenching experiment of 45 steel. The results indicate that the simulation results are comparatively close to the experimental results.展开更多
Computer simulation models may by used to gain further information about missile performance variability. Model validation is an important aspect of the test program for a missile system. Validation provides a basis f...Computer simulation models may by used to gain further information about missile performance variability. Model validation is an important aspect of the test program for a missile system. Validation provides a basis for confidence in the model's results and is a necessary step if the model is to be used to draw inference about the behavior of the real missile. This paper is a review of methods useful for validation of computer simulation models of missile systems and provides a new method with high degree of confidence for validation of computer simulation models of missile systems. Some examples of the use of the new method in validating computer simulation models are given.展开更多
AIM:To compare accuracy,reproducibility and test duration for the Snellen and the Early Treatment Diabetic Retinopathy Study(ETDRS)charts,two main tools used to measure visual acuity(VA).·M ETHODS:A compute...AIM:To compare accuracy,reproducibility and test duration for the Snellen and the Early Treatment Diabetic Retinopathy Study(ETDRS)charts,two main tools used to measure visual acuity(VA).·M ETHODS:A computer simulation was programmed to run multiple virtual patients,each with a unique set of assigned parameters,including VA,false-positive and false-negative error values.For each virtual patient,assigned VA was randomly chosen along a continuous scale spanning the range between 1.0 to 0.0 log MAR units(equivalent to 20/200 to 20/20).Each of 30 000virtual patients were run ten times on each of the two VA charts.·RESULTS:Average test duration(expressed as the total number of characters presented during the test±SD)was12.6±11.1 and 31.2±14.7 characters,for the Snellen and ETDRS,respectively.Accuracy,defined as the absolute difference(±SD)between the assigned VA and the measured VA,expressed in log MAR units,was superior in the ETDRS charts:0.12±0.14 and 0.08±0.08,for the Snellen and ETDRS charts,respectively.Reproducibility,expressed as test-retest variability,was superior in the ETDRS charts:0.23±0.17 and 0.11±0.09 log MAR units,for the Snellen and ETDRS charts,respectively.·CONCLUSION:A comparison of true(assigned)VA to measured VA,demonstrated,on average,better accuracy and reproducibility of the ETDRS chart,but at the penalty of significantly longer test duration.These differences were most pronounced in the low VA range.The reproducibility using a simulation approach is in line with reproducibility values found in several clinical studies.展开更多
文摘The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.
文摘The application of computer simulation technique to electronic controlled fuel injection(EFI) engine was studied to increase the development speed and improve the overall performance of the engine and car. On the basis of an EFI system developed by ourselves, the simulation model of the initial control data and engine operation points during a driving cycle and the car performance pridiction model were established. This method was applied to a mini car. The experiment showed that the simulated control data has good accuracy; and the engine test points and car performances obtained by simulation are useful for the matching of EFI system with gasoline engine and the development speed is increased.
文摘This paper used EAM and static relaxation method to simulate the grain boundary segregation behavior of Mg in Ni-based superalloys. The results offer a better understanding in the strengthening mechanism of Mg addition in superalloys. The segregation of Mg increases the grain boundary cohesive bond and the vacancy formation energy, and decreases the mobility of grain boundary dislocation. It results in the retardation of creep voids initiation and growth.
文摘A major motivation for this work is to investigate a method of computer simulation for compensating fixed pattern noise of the infrared focal plane arrays. A mathematical model of the output signal of focal plane array was established; a compensating algorithm utilizing reference source was derived and simulating programs were designed. The images of compensating process verify the influence of nonuniformity of responsibility and offset on fixed pattern noise. The result show that simulating method of investigating compensation technology for focal plane arrays is feasible, the generated images and methods can be used to the study of image recognition.
基金supported by the National Natural Science Foundation of China(NNSFC)grants 42074202,42274196Strategic Priority Research Program of Chinese Academy of Sciences grant XDB41000000ISSI-BJ International Team Interaction between magnetic reconnection and turbulence:From the Sun to the Earth。
文摘Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging allows investigation of the large-scale magnetopause by providing a two-dimensional(2-D)global view from a satellite.By performing 3-D global hybrid-particle-in-cell(hybrid-PIC)simulations,we obtain soft X-ray images of Earth’s magnetopause under different solar wind conditions,such as different plasma densities and directions of the southward interplanetary magnetic field.In all cases,magnetic reconnection occurs at low latitude magnetopause.The soft X-ray images observed by a hypothetical satellite are shown,with all of the following identified:the boundary of the magnetopause,the cusps,and the magnetosheath.Local X-ray emissivity in the magnetosheath is characterized by large amplitude fluctuations(up to 160%);however,the maximum line-of-sight-integrated X-ray intensity matches the tangent directions of the magnetopause well,indicating that these fluctuations have limited impact on identifying the magnetopause boundary in the X-ray images.Moreover,the magnetopause boundary can be identified using multiple viewing geometries.We also find that solar wind conditions have little effect on the magnetopause identification.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will provide X-ray images of the magnetopause for the first time,and our global hybrid-PIC simulation results can help better understand the 2-D X-ray images of the magnetopause from a 3-D perspective,with particle kinetic effects considered.
基金the European Research Council for starting grant 200141-QuESpace,with which the Vlasiator model was developedconsolidator grant 682068-PRESTISSIMO awarded for further development of Vlasiator and its use in scientific investigations+4 种基金Academy of Finland grant numbers 338629-AERGELC’H,339756-KIMCHI,336805-FORESAIL,and 335554-ICT-SUNVACThe Academy of Finland also supported this work through the PROFI4 grant(grant number 3189131)support from the NASA grants,80NSSC20K1670 and 80MSFC20C0019the NASA GSFC FY23 IRADHIF funds。
文摘Solar wind charge exchange produces emissions in the soft X-ray energy range which can enable the study of near-Earth space regions such as the magnetopause,the magnetosheath and the polar cusps by remote sensing techniques.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)and Lunar Environment heliospheric X-ray Imager(LEXI)missions aim to obtain soft Xray images of near-Earth space thanks to their Soft X-ray Imager(SXI)instruments.While earlier modeling works have already simulated soft X-ray images as might be obtained by SMILE SXI during its mission,the numerical models used so far are all based on the magnetohydrodynamics description of the space plasma.To investigate the possible signatures of ion-kinetic-scale processes in soft Xray images,we use for the first time a global hybrid-Vlasov simulation of the geospace from the Vlasiator model.The simulation is driven by fast and tenuous solar wind conditions and purely southward interplanetary magnetic field.We first produce global X-ray images of the dayside near-Earth space by placing a virtual imaging satellite at two different locations,providing meridional and equatorial views.We then analyze regional features present in the images and show that they correspond to signatures in soft X-ray emissions of mirrormode wave structures in the magnetosheath and flux transfer events(FTEs)at the magnetopause.Our results suggest that,although the time scales associated with the motion of those transient phenomena will likely be significantly smaller than the integration time of the SMILE and LEXI imagers,mirror-mode structures and FTEs can cumulatively produce detectable signatures in the soft X-ray images.For instance,a local increase by 30%in the proton density at the dayside magnetopause resulting from the transit of multiple FTEs leads to a 12%enhancement in the line-of-sight-and time-integrated soft X-ray emissivity originating from this region.Likewise,a proton density increase by 14%in the magnetosheath associated with mirror-mode structures can result in an enhancement in the soft X-ray signal by 4%.These are likely conservative estimates,given that the solar wind conditions used in the Vlasiator run can be expected to generate weaker soft X-ray emissions than the more common denser solar wind.These results will contribute to the preparatory work for the SMILE and LEXI missions by providing the community with quantitative estimates of the effects of small-scale,transient phenomena occurring on the dayside.
基金funded by the Chinese Academy of Medical Science health innovation project(grant nos.2021-I2M-1-042,2021-I2M-1-058,and 2022-I2M-C&T-A-005)Tianjin Outstanding Youth Fund Project(grant no.20JCJQIC00230)CAMS Innovation Fund for Medical Sciences(CIFMS)(grant no.2022-I2M-C&T-B-012).
文摘Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes delineated by explicit optical characteristics,Monte Carlo simulations possess the theoretical capacity to render unparalleled accuracy in the depiction of exceedingly intricate phenomena.Nonetheless,the quintessential challenge associated with Monte Carlo simulation methodologies resides in their extended computational duration,which significantly impedes the refinement of their precision.Consequently,this discourse is specifically dedicated to exploring innovations in strategies and technologies aimed at expediting Monte Carlo simulations.It delves into the foundational concepts of various acceleration tactics,evaluates these strategies concerning their speed,accuracy,and practicality,and amalgamates a comprehensive overview and critique of acceleration methodologies for Monte Carlo simulations.Ultimately,the discourse envisages prospective trajectories for the employment of Monte Carlo techniques within the domain of tissue optics.
基金supported by the National Natural Science Foundation of China (Grant Nos. 92158204, 41506001 and 42076019)a Project supported by the Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (Grant No. 311021005)。
文摘The variations of the frontogenetic trend of a cold filament induced by the cross-filament wind and wave fields are studied by a non-hydrostatic large eddy simulation. Five cases with different strengths of wind and wave fields are studied.The results show that the intense wind and wave fields further break the symmetries of submesoscale flow fields and suppress the levels of filament frontogenesis. The changes of secondary circulation directions—that is, the conversion between the convergence and divergence of the surface cross-filament currents with the downwelling and upwelling jets in the filament center—are associated with the inertial oscillation. The filament frontogenesis and frontolysis caused by the changes of secondary circulation directions may periodically sharpen and smooth the gradient of submesoscale flow fields.The lifecycle of the cold filament may include multiple stages of filament frontogenesis and frontolysis.
基金financial support from National Natural Science Foundation of China(Grant No.12172325)。
文摘Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock.
基金supported by the Chinese-Norwegian Collaboration Projects within Climate Systems jointly funded by the National Key Research and Development Program of China (Grant No.2022YFE0106800)the Research Council of Norway funded project MAPARC (Grant No.328943)+2 种基金the support from the Research Council of Norway funded project BASIC (Grant No.325440)the Horizon 2020 project APPLICATE (Grant No.727862)High-performance computing and storage resources were performed on resources provided by Sigma2 - the National Infrastructure for High-Performance Computing and Data Storage in Norway (through projects NS8121K,NN8121K,NN2345K,NS2345K,NS9560K,NS9252K,and NS9034K)。
文摘To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simulations carried out by the Norwegian Earth System Model with a coupled atmosphere–land surface model, forced by seasonal sea ice conditions from preindustrial, present-day, and future periods. Each ensemble member within the same set uses the same forcing but with small perturbations to the atmospheric initial state. Hence, the difference between the present-day(or future) ensemble mean and the preindustrial ensemble mean provides the ice-loss-induced response, while the difference of the individual members within the present-day(or future) set is the effect of atmospheric internal variability. Results indicate that both present-day and future sea ice loss can force a negative phase of the Arctic Oscillation with a WACE pattern in winter. The magnitude of ice-induced Arctic warming is over four(ten) times larger than the ice-induced East Asian cooling in the present-day(future) experiment;the latter having a magnitude that is about 30% of the observed cooling. Sea ice loss contributes about 60%(80%) to the Arctic winter warming in the present-day(future) experiment. Atmospheric internal variability can also induce a WACE pattern with comparable magnitudes between the Arctic and East Asia. Ice-lossinduced East Asian cooling can easily be masked by atmospheric internal variability effects because random atmospheric internal variability may induce a larger magnitude warming. The observed WACE pattern occurs as a result of both Arctic sea ice loss and atmospheric internal variability, with the former dominating Arctic warming and the latter dominating East Asian cooling.
基金supported by the National Key Research and Development Program of China(No.2021YFA0718404)the National Natural Science Foundation of China(Nos.12220101003,12173098,U2031149)+2 种基金the Project for Young Scientists in Basic Research of Chinese Academy of Sciences(CAS)(No.YSBR-061)the Scientific Instrument Developing Project of CAS(No.GJJSTD20210009)the Youth Innovation Promotion Association of CAS,and the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(No.YESS20220197).
文摘The Very Large Area gamma-ray Space Telescope(VLAST)is a mission concept proposed to detect gamma-ray photons through both Compton scattering and electron–positron pair production mechanisms,thus enabling the detection of photons with energies ranging from MeV to TeV.This project aims to conduct a comprehensive survey of the gamma-ray sky from a low-Earth orbit using an anti-coincidence detector,a tracker detector that also serves as a low-energy calorimeter,and a high-energy imaging calorimeter.We developed a Monte Carlo simulation application of the detector using the GEANT4 toolkit to evaluate the instrument performance,including the effective area,angular resolution,and energy resolution,and explored specific optimizations of the detector configuration.Our simulation-based analysis indicates that the current design of the VLAST is physically feasible,with an acceptance above 10 m^(2)sr which is four times larger than that of the Fermi-LAT,an energy resolution better than 2%at 10 GeV,and an angular resolution better than 0.2◦at 10 GeV.The VLAST project promises to make significant contributions to the field of gamma-ray astronomy and enhance our understanding of the cosmos.
基金supported by the project of the China Geological Survey(No.DD20221746)the National Natural Science Foundation of China(Grant Nos.41101086)。
文摘Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events.
基金the National Research Foundation of Korea(Nos.2018R1A5A7023490 and 2022R1A2C1003003)。
文摘A chemo-mechanical model is developed to investigate the effects on the stress development of the coating of polycrystalline Ni-rich LiNixMnyCo_(z)O_(2)(x≥0.8)(NMC)particles with poly(3,4-ethylenedioxythiophene)(PEDOT).The simulation results show that the coating of primary NMC particles significantly reduces the stress generation by efficiently accommodating the volume change associated with the lithium diffusion,and the coating layer plays roles both as a cushion against the volume change and a channel for the lithium transport,promoting the lithium distribution across the secondary particles more homogeneously.Besides,the lower stiffness,higher ionic conductivity,and larger thickness of the coating layer improve the stress mitigation.This paper provides a mathematical framework for calculating the chemo-mechanical responses of anisotropic electrode materials and fundamental insights into how the coating of NMC active particles mitigates stress levels.
文摘In this paper, a modified temperature-phase transformation-stress/strain field coupled 3D non-linear mathematical model was used in the computer simulation on heat treatment processes of workpieces including catch jaw, anchor ring, cold roller, large-scale bearing roller, nitriding crank shaft, etc. The simulation on complicated technologies such as pre-cooled quenching, double media quenching, self-tempering, difference temperature heating, nitriding distortion was carried out. The optimum design of heat treatment technology has been realized. The successful application of computer simulation on heat treatment have also been demonstrated.
文摘The 3D FEM numerical simulation on multi-action precision cold forging technology of universal joint cross and differential spider is done in this article using DEFORM Software, a commercial computer aided engineering software specializing in forming and heat treatment simulation technology, and suitable for cold, warm and hot forging process. The material flow properties, the dynamic variation of stress and strain in the process of deformation and the load-stroke curve have also been achieved. A good consistency is exhibited between simulation results and practical data. Based on the DEFORM simulation results, the optimized procedure has been found for forging a universal joint cross. What should be emphasized here is that a better understanding of practical forging characters and the environmental factors can greatly improve the simulation accuracy thus make the simulation results more reliable.
文摘It was found that rare earth influenced per process of permeation layer forming, and that the tooth of layer was thinner, thicker, straighter and longer by observing permeation layers at different holding times.It was so image, lifelike and audio-visual by computer kinetic simulation that the layer forming could be continuously observed. Because it con forms to reality, the computer kinetic simulation can forecast the layer thickness and it will offer a reasonable permeating technology.
文摘Based on the existing component models in the Pspice software package, a combined model for Insulat- ed the Bipolar Transistor (IGBT) is established, in which a non - linear is introduced to represent the parasitic capacitance. Using this model, computerized simulation is conducted for the FB - ZVZCS - PWM soft - ewitching converter,the switching and energy-transferring characteristics of the components are analyzed.The simulation results are testified by experiments.It is proved that by abopting appropriate models,computerized simulation becomes an effective tool for investigation of arc welding inverter power source.
文摘A computer software to simulate the phase transformation during quenching is designed based on Avrami equation and Scheil additivity principle of incubation period. The isothermal transformation diagrams of supercooled austenite are described by cubic spline functions. This software is possess of a good graphic interface of Windows style, can simulate the whole process in austenite decomposition during continuous cooling. If the cooling rate was given, the fraction of various microstructures transformed of austenite decomposition during continuous cooling at any temperature can be calculated. The simulation results are checked with the quenching experiment of 45 steel. The results indicate that the simulation results are comparatively close to the experimental results.
文摘Computer simulation models may by used to gain further information about missile performance variability. Model validation is an important aspect of the test program for a missile system. Validation provides a basis for confidence in the model's results and is a necessary step if the model is to be used to draw inference about the behavior of the real missile. This paper is a review of methods useful for validation of computer simulation models of missile systems and provides a new method with high degree of confidence for validation of computer simulation models of missile systems. Some examples of the use of the new method in validating computer simulation models are given.
文摘AIM:To compare accuracy,reproducibility and test duration for the Snellen and the Early Treatment Diabetic Retinopathy Study(ETDRS)charts,two main tools used to measure visual acuity(VA).·M ETHODS:A computer simulation was programmed to run multiple virtual patients,each with a unique set of assigned parameters,including VA,false-positive and false-negative error values.For each virtual patient,assigned VA was randomly chosen along a continuous scale spanning the range between 1.0 to 0.0 log MAR units(equivalent to 20/200 to 20/20).Each of 30 000virtual patients were run ten times on each of the two VA charts.·RESULTS:Average test duration(expressed as the total number of characters presented during the test±SD)was12.6±11.1 and 31.2±14.7 characters,for the Snellen and ETDRS,respectively.Accuracy,defined as the absolute difference(±SD)between the assigned VA and the measured VA,expressed in log MAR units,was superior in the ETDRS charts:0.12±0.14 and 0.08±0.08,for the Snellen and ETDRS charts,respectively.Reproducibility,expressed as test-retest variability,was superior in the ETDRS charts:0.23±0.17 and 0.11±0.09 log MAR units,for the Snellen and ETDRS charts,respectively.·CONCLUSION:A comparison of true(assigned)VA to measured VA,demonstrated,on average,better accuracy and reproducibility of the ETDRS chart,but at the penalty of significantly longer test duration.These differences were most pronounced in the low VA range.The reproducibility using a simulation approach is in line with reproducibility values found in several clinical studies.