Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve...Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve the expected economy.This paper constructs an operating simulation model of the park power grid operation considering demand response and proposes a multi-time scale operating simulation method that combines day-ahead optimization and model predictive control(MPC).In the day-ahead stage,an operating simulation plan that comprehensively considers the user’s side comfort and operating costs is proposed with a long-term time scale of 15 min.In order to cope with power fluctuations of photovoltaic,wind turbine and conventional load,MPC is used to track and roll correct the day-ahead operating simulation plan in the intra-day stage to meet the actual operating operation status of the park.Finally,the validity and economy of the operating simulation strategy are verified through the analysis of arithmetic examples.展开更多
The NHS is right now confronting huge pressures relating to demand and capacity in radiology. The purpose of this research has been to provide information about MRI usage, details of operational aspects of MRI service...The NHS is right now confronting huge pressures relating to demand and capacity in radiology. The purpose of this research has been to provide information about MRI usage, details of operational aspects of MRI services, and to ascertain the planning intentions of NHS radiology services to keep up and create MRI capacity. The report expands on using Discrete Event Simulation (DES) to inspect and plan the utilisation of NHS hospital resources for the radiology department to help a 24 hr service that is available to outpatients which will help with diminishing patient waiting time, better resource usage, understanding the capacity and demand. Consequently, this research examines to adjust staff and resources with the demand of the MRI. The research was investigated using DES in various scenarios to find which resources are inactive;patients are treated slowly. DES helped in discovering resource utilisation and outpatient throughout the system. It additionally helped in distinguishing the bottlenecks in patient flow. The DES simulation results demonstrated that time for the outpatient in the system is less and more outpatients have been treated too. There is a higher level of outpatient patients leaving the system under 120 minutes. The report uncovered an MRI report interpretation time. Reception room time and MRI waiting room time are decreased significantly. It additionally exhibited with an expanded outflow of outpatients, resources, for example, MRI capacity and radiographer utilisation expanded.展开更多
Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental water demand is brought into groundwater systems model as the important water consumption item ...Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental water demand is brought into groundwater systems model as the important water consumption item and unification of groundwater抯 economic, environmental and ecological functions were taken into account. Based on eco-environmental water demand at Da抋n in Jilin province, a three-dimensional simulation and optimized management model of groundwater systems was established. All water balance components of groundwater systems in 1998 and 1999 were simulated with this model and the best optimal exploitation scheme of groundwater systems in 2000 was determined, so that groundwater resource was efficiently utilized and good economic, ecologic and social benefits were obtained.展开更多
This paper collects and synthesizes the technical requirements, implementation, and validation methods for quasi-steady agent-based simulations of interconnectionscale models with particular attention to the integrati...This paper collects and synthesizes the technical requirements, implementation, and validation methods for quasi-steady agent-based simulations of interconnectionscale models with particular attention to the integration of renewable generation and controllable loads. Approaches for modeling aggregated controllable loads are presented and placed in the same control and economic modeling framework as generation resources for interconnection planning studies. Model performance is examined with system parameters that are typical for an interconnection approximately the size of the Western Electricity Coordinating Council(WECC) and a control area about 1/100 the size of the system. These results are used to demonstrate and validate the methods presented.展开更多
This paper studies price-based residential demand response management(PB-RDRM)in smart grids,in which non-dispatchable and dispatchable loads(including general loads and plug-in electric vehicles(PEVs))are both involv...This paper studies price-based residential demand response management(PB-RDRM)in smart grids,in which non-dispatchable and dispatchable loads(including general loads and plug-in electric vehicles(PEVs))are both involved.The PB-RDRM is composed of a bi-level optimization problem,in which the upper-level dynamic retail pricing problem aims to maximize the profit of a utility company(UC)by selecting optimal retail prices(RPs),while the lower-level demand response(DR)problem expects to minimize the comprehensive cost of loads by coordinating their energy consumption behavior.The challenges here are mainly two-fold:1)the uncertainty of energy consumption and RPs;2)the flexible PEVs’temporally coupled constraints,which make it impossible to directly develop a model-based optimization algorithm to solve the PB-RDRM.To address these challenges,we first model the dynamic retail pricing problem as a Markovian decision process(MDP),and then employ a model-free reinforcement learning(RL)algorithm to learn the optimal dynamic RPs of UC according to the loads’responses.Our proposed RL-based DR algorithm is benchmarked against two model-based optimization approaches(i.e.,distributed dual decomposition-based(DDB)method and distributed primal-dual interior(PDI)-based method),which require exact load and electricity price models.The comparison results show that,compared with the benchmark solutions,our proposed algorithm can not only adaptively decide the RPs through on-line learning processes,but also achieve larger social welfare within an unknown electricity market environment.展开更多
Indoor thermal comfort and passive solar heating technologies have been extensively studied.However,few studies have explored the suitability of passive solar heating technologies based on differentiated thermal comfo...Indoor thermal comfort and passive solar heating technologies have been extensively studied.However,few studies have explored the suitability of passive solar heating technologies based on differentiated thermal comfort demands.This work took the rural dwellings in Northwest China as the research object.First,the current indoor and outdoor thermal environment in winter and the mechanism of residents’differentiated demand for indoor thermal comfort were obtained through tests,questionnaires,and statistical analysis.Second,a comprehensive passive optimized design of existing buildings was conducted,and the validity of the optimized combination scheme was explored using DesignBuilder software.Finally,the suitability of passive solar heating technology for each region in Northwest China was analyzed based on residents’differentiated demand for indoor thermal comfort.The regions were then classified according to the suitability of the technology for these.The results showed that the indoor heating energy consumption was high and the indoor thermal environment was not ideal,yet the solar energy resources were abundant.Indoor comfort temperature indexes that match the functional rooms and usage periods were proposed.For the buildings with the optimized combination scheme,the average indoor temperature was increased significantly and the temperature fluctuation was decreased dramatically.Most regions in Northwest China were suitable for the development of passive solar heating technology.Based on the obtained suitability of the technology for the regions of Northwest China,these were classified into most suitable,more suitable,less suitable,and unsuitable regions.展开更多
To adapt to the complex and changeable market environment,the cell formation problems(CFPs) and the cell layout problems(CLPs) with fuzzy demands were optimized simultaneously. Firstly,CFPs and CLPs were described for...To adapt to the complex and changeable market environment,the cell formation problems(CFPs) and the cell layout problems(CLPs) with fuzzy demands were optimized simultaneously. Firstly,CFPs and CLPs were described formally. To deal with the uncertainty fuzzy parameters brought,a chance constraint was introduced. A mathematical model was established with an objective function of minimizing intra-cell and inter-cell material handling cost. As the chance constraint of this problem could not be converted into its crisp equivalent,a hybrid simulated annealing(HSA) based on fuzzy simulation was put forward. Finally,simulation experiments were conducted under different confidence levels. Results indicated that the proposed hybrid algorithm was feasible and effective.展开更多
When typical meteorological year (TMY) data are used as an input to simulate the energy used in a building, it is not clear which hours in the weather data file might correspond to an electric or natural gas utility’...When typical meteorological year (TMY) data are used as an input to simulate the energy used in a building, it is not clear which hours in the weather data file might correspond to an electric or natural gas utility’s peak demand. Yet, the determination of peak demand impacts is important in utility resource planning exercises and in determining the value of demand-side management (DSM) actions. We propose a formal probability-based method to estimate the summer and winter peak demand reduction from an energy efficiency measure when TMY data and model simulations are used to estimate peak impacts. In the estimation of winter peak demand impacts from some example energy efficiency measures in Texas, our proposed method performs far better than two alternatives. In the estimation of summer peak demand impacts, our proposed method provides very reasonable results which are very similar to those obtained from the Heat Wave approach adopted in California.展开更多
The Inohana Lake is a branch lake of the Hamana Lake. The Inohana Lake is an estuary rather than a brackish lake, and has suffered environmental problems such as eutrophication and bottom hypoxic water. In this study,...The Inohana Lake is a branch lake of the Hamana Lake. The Inohana Lake is an estuary rather than a brackish lake, and has suffered environmental problems such as eutrophication and bottom hypoxic water. In this study, the coupled hydrodynamic and ecological models (eco-hydrodynamic model) were used to construct the strategy for preventing the bottom hypoxic water and improving or recovering the water quality in the lake. Using the model input obtained from the summertime data over 1998-2002, the summer-average flow field and oxygen concentration and budget of the standard run were calculated. Remedial measures used in this study are divided into two parts: the biogeochemical and physical changes in the present situation. For the remedial measures including the biogeochemical changes in the present situation, the simulations considering the reductions of the nutrient inputs from the river, main lake (land) and bottom sediment, and the sediment oxygen demand (SOD) were carried out. For the remedial measures including the physical changes, the 50 and 100 m extensions of the inlet width were considered in the model runs. These simulated results were compared in terms of changes in the dissolved oxygen (DO) concentration and oxygen budget in the bottom layer in the Inohana Lake. There was no significant change in the DO concentration and oxygen stock in the simulations for the reduction of the nutrient inputs from the land and bottom sediment, however increases in those in the simulations for the reduction of SOD. When SOD was reduced by 50%, the bottom DO concentration increased by approximately 2 mg/L and the oxygen stock in the bottom layer increased by 47% comparing the present situation (the standard run) of the lake. The simulation results for inlet width extension showed that the extension of width makes the DO concentration and oxygen stock lower. The remedial measures for the sediment control were proposed to prevent the bottom hypoxia and manage the water quality.展开更多
The effect of two nighttime ventilation strategies on cooling and heating energy use is investigated for a prototype office building in several northern America climates, using hourly building energy simulation softwa...The effect of two nighttime ventilation strategies on cooling and heating energy use is investigated for a prototype office building in several northern America climates, using hourly building energy simulation software (DOE2.1E). The strategies include: scheduled-driven nighttime ventilation and a predictive method for nighttime ventilation. The maximum possible energy savings and peak demand reduction in each climate is analyzed as a function of ventilation rate, indoor-outdoor temperature difference, and building thermal mass. The results show that nighttime ventilation could save up to 32% cooling energy in an office building, while the total energy and peak demand savings for the fan and cooling is about 13% and 10%, respectively. Consequently, finding the optimal control parameters for the nighttime ventilation strategies is very important. The performance of the two strategies varies in different climates. The predictive nighttime ventilation worked better in weather conditions with fairly smooth transition from heating to cooling season.展开更多
Building Energy Management Systems(BEMS)are computer-based systems that aid in managing,controlling,and monitoring the building technical services and energy consumption by equipment used in the building.The effective...Building Energy Management Systems(BEMS)are computer-based systems that aid in managing,controlling,and monitoring the building technical services and energy consumption by equipment used in the building.The effectiveness of BEMS is dependent upon numerous factors,among which the operational characteristics of the building and the BEMS control parameters also play an essential role.This research develops a user-driven simulation tool where users can input the building parameters and BEMS controls to determine the effectiveness of their BEMS.The simulation tool gives the user the flexibility to understand the potential energy savings by employing specific BEMS control and help in making intelligent decisions.The simulation is developed using Visual Basic Application(VBA)in Microsoft Excel,based on discrete-event Monte Carlo Simulation(MCS).The simulation works by initially calculating the energy required for space cooling and heating based on current building parameters input by the user in the model.Further,during the second simulation,the user selects all the BEMS controls and improved building envelope to determine the energy required for space cooling and heating during that case.The model compares the energy consumption from the first simulation and the second simulation.Then the simulation model will provide the rating of the effectiveness of BEMS on a continuous scale of 1 to 5(1 being poor effectiveness and 5 being excellent effectiveness of BEMS).This work is intended to facilitate building owner/energy managers to analyze the building energy performance concerning the efficacy of their energy management system.展开更多
Emergency ambulance services in the UK are tasked with providing pre-hospital patient care and clinical services with a target response time between call connect to on-scene attendance.In 2017,NHS England introduced f...Emergency ambulance services in the UK are tasked with providing pre-hospital patient care and clinical services with a target response time between call connect to on-scene attendance.In 2017,NHS England introduced four new response time categories based on patient needs.The most challenging is to be on-scene for a life-threatening situation within seven minutes of the call being connected when such calls are random in terms of time and place throughout a large territory.Recent evidence indicates emergency ambulance services regularly fall short of achieving the target ambulance response times set by the National Health Service(NHS).To achieve these targets,they need to undertake transformational change and apply statistical,operations research and artificial intelligence techniques in the form of five separate modules covering demand forecasting,plus locate,allocate,dispatch,monitoring and re-deployment of resources.These modules should be linked in real-time employing a data warehouse to minimise computational data and generate accurate,meaningful and timely decisions ensuring patients receive an appropriate and timely response.A simulation covering a limited geographical area,time and operational data concluded that this form of integration of the five modules provides accurate and timely data upon which to make decisions that effectively improve ambulance response times.展开更多
针对模糊需求下的绿色两级车辆路径问题,以最小化车辆运营成本和油耗成本之和为优化目标,提出一种混合超启发式算法进行求解.首先,考虑两级问题解空间庞大且相互耦合,设计一种聚类分解策略将该问题分解为多个子问题,以合理缩小问题搜索...针对模糊需求下的绿色两级车辆路径问题,以最小化车辆运营成本和油耗成本之和为优化目标,提出一种混合超启发式算法进行求解.首先,考虑两级问题解空间庞大且相互耦合,设计一种聚类分解策略将该问题分解为多个子问题,以合理缩小问题搜索空间;然后,提出增强超启发式分布估计算法(enhanced hyperheuristic estimation of distribution algorithm,EHHEDA)对各个子问题进行求解,进而获得原问题的解.EHHEDA基于超启发式算法框架,在高层策略域设计一种基于三维概率模型的分布估计算法,动态确定由底层操作域中各搜索算子所组成的排列(即高层个体),可有效控制和引导整个算法的搜索行为;同时,在底层操作域设计10种有效邻域搜索算子,并加入重升温操作的模拟退火机制作为问题解(即底层个体)的接受准则,有利于在问题解空间中执行深入搜索.仿真实验结果表明,所提出的算法在大多数测试集上优于近年来用于求解类似问题的算法,验证了所提出算法的有效性.展开更多
基金supported by the Science and Technology Project of State Grid Shanxi Electric Power Research Institute:Research on Data-Driven New Power System Operation Simulation and Multi Agent Control Strategy(52053022000F).
文摘Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve the expected economy.This paper constructs an operating simulation model of the park power grid operation considering demand response and proposes a multi-time scale operating simulation method that combines day-ahead optimization and model predictive control(MPC).In the day-ahead stage,an operating simulation plan that comprehensively considers the user’s side comfort and operating costs is proposed with a long-term time scale of 15 min.In order to cope with power fluctuations of photovoltaic,wind turbine and conventional load,MPC is used to track and roll correct the day-ahead operating simulation plan in the intra-day stage to meet the actual operating operation status of the park.Finally,the validity and economy of the operating simulation strategy are verified through the analysis of arithmetic examples.
文摘The NHS is right now confronting huge pressures relating to demand and capacity in radiology. The purpose of this research has been to provide information about MRI usage, details of operational aspects of MRI services, and to ascertain the planning intentions of NHS radiology services to keep up and create MRI capacity. The report expands on using Discrete Event Simulation (DES) to inspect and plan the utilisation of NHS hospital resources for the radiology department to help a 24 hr service that is available to outpatients which will help with diminishing patient waiting time, better resource usage, understanding the capacity and demand. Consequently, this research examines to adjust staff and resources with the demand of the MRI. The research was investigated using DES in various scenarios to find which resources are inactive;patients are treated slowly. DES helped in discovering resource utilisation and outpatient throughout the system. It additionally helped in distinguishing the bottlenecks in patient flow. The DES simulation results demonstrated that time for the outpatient in the system is less and more outpatients have been treated too. There is a higher level of outpatient patients leaving the system under 120 minutes. The report uncovered an MRI report interpretation time. Reception room time and MRI waiting room time are decreased significantly. It additionally exhibited with an expanded outflow of outpatients, resources, for example, MRI capacity and radiographer utilisation expanded.
基金The Key Project of the National Ninth-Five-Year Plan No. 96-004-02-09The 48Project of Ministry of Water Resources No. 985106The Project of Chinese Academy of Sciences
文摘Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental water demand is brought into groundwater systems model as the important water consumption item and unification of groundwater抯 economic, environmental and ecological functions were taken into account. Based on eco-environmental water demand at Da抋n in Jilin province, a three-dimensional simulation and optimized management model of groundwater systems was established. All water balance components of groundwater systems in 1998 and 1999 were simulated with this model and the best optimal exploitation scheme of groundwater systems in 2000 was determined, so that groundwater resource was efficiently utilized and good economic, ecologic and social benefits were obtained.
文摘This paper collects and synthesizes the technical requirements, implementation, and validation methods for quasi-steady agent-based simulations of interconnectionscale models with particular attention to the integration of renewable generation and controllable loads. Approaches for modeling aggregated controllable loads are presented and placed in the same control and economic modeling framework as generation resources for interconnection planning studies. Model performance is examined with system parameters that are typical for an interconnection approximately the size of the Western Electricity Coordinating Council(WECC) and a control area about 1/100 the size of the system. These results are used to demonstrate and validate the methods presented.
基金This work was supported in part by the National Natural Science Foundation of China(61922076,61725304,61873252,61991403,61991400)in part by the Australian Research Council Discovery Program(DP200101199).
文摘This paper studies price-based residential demand response management(PB-RDRM)in smart grids,in which non-dispatchable and dispatchable loads(including general loads and plug-in electric vehicles(PEVs))are both involved.The PB-RDRM is composed of a bi-level optimization problem,in which the upper-level dynamic retail pricing problem aims to maximize the profit of a utility company(UC)by selecting optimal retail prices(RPs),while the lower-level demand response(DR)problem expects to minimize the comprehensive cost of loads by coordinating their energy consumption behavior.The challenges here are mainly two-fold:1)the uncertainty of energy consumption and RPs;2)the flexible PEVs’temporally coupled constraints,which make it impossible to directly develop a model-based optimization algorithm to solve the PB-RDRM.To address these challenges,we first model the dynamic retail pricing problem as a Markovian decision process(MDP),and then employ a model-free reinforcement learning(RL)algorithm to learn the optimal dynamic RPs of UC according to the loads’responses.Our proposed RL-based DR algorithm is benchmarked against two model-based optimization approaches(i.e.,distributed dual decomposition-based(DDB)method and distributed primal-dual interior(PDI)-based method),which require exact load and electricity price models.The comparison results show that,compared with the benchmark solutions,our proposed algorithm can not only adaptively decide the RPs through on-line learning processes,but also achieve larger social welfare within an unknown electricity market environment.
基金supported by the National Natural Science Foundation of China(Grant Nos.52078419 and 51678483)supported by the Doctoral Dissertation Innovation Fund of Xi’an University of Technology(310–252072116).
文摘Indoor thermal comfort and passive solar heating technologies have been extensively studied.However,few studies have explored the suitability of passive solar heating technologies based on differentiated thermal comfort demands.This work took the rural dwellings in Northwest China as the research object.First,the current indoor and outdoor thermal environment in winter and the mechanism of residents’differentiated demand for indoor thermal comfort were obtained through tests,questionnaires,and statistical analysis.Second,a comprehensive passive optimized design of existing buildings was conducted,and the validity of the optimized combination scheme was explored using DesignBuilder software.Finally,the suitability of passive solar heating technology for each region in Northwest China was analyzed based on residents’differentiated demand for indoor thermal comfort.The regions were then classified according to the suitability of the technology for these.The results showed that the indoor heating energy consumption was high and the indoor thermal environment was not ideal,yet the solar energy resources were abundant.Indoor comfort temperature indexes that match the functional rooms and usage periods were proposed.For the buildings with the optimized combination scheme,the average indoor temperature was increased significantly and the temperature fluctuation was decreased dramatically.Most regions in Northwest China were suitable for the development of passive solar heating technology.Based on the obtained suitability of the technology for the regions of Northwest China,these were classified into most suitable,more suitable,less suitable,and unsuitable regions.
基金Supported by the National Natural Science Foundation of China(No.61273035,71471135)
文摘To adapt to the complex and changeable market environment,the cell formation problems(CFPs) and the cell layout problems(CLPs) with fuzzy demands were optimized simultaneously. Firstly,CFPs and CLPs were described formally. To deal with the uncertainty fuzzy parameters brought,a chance constraint was introduced. A mathematical model was established with an objective function of minimizing intra-cell and inter-cell material handling cost. As the chance constraint of this problem could not be converted into its crisp equivalent,a hybrid simulated annealing(HSA) based on fuzzy simulation was put forward. Finally,simulation experiments were conducted under different confidence levels. Results indicated that the proposed hybrid algorithm was feasible and effective.
文摘When typical meteorological year (TMY) data are used as an input to simulate the energy used in a building, it is not clear which hours in the weather data file might correspond to an electric or natural gas utility’s peak demand. Yet, the determination of peak demand impacts is important in utility resource planning exercises and in determining the value of demand-side management (DSM) actions. We propose a formal probability-based method to estimate the summer and winter peak demand reduction from an energy efficiency measure when TMY data and model simulations are used to estimate peak impacts. In the estimation of winter peak demand impacts from some example energy efficiency measures in Texas, our proposed method performs far better than two alternatives. In the estimation of summer peak demand impacts, our proposed method provides very reasonable results which are very similar to those obtained from the Heat Wave approach adopted in California.
文摘The Inohana Lake is a branch lake of the Hamana Lake. The Inohana Lake is an estuary rather than a brackish lake, and has suffered environmental problems such as eutrophication and bottom hypoxic water. In this study, the coupled hydrodynamic and ecological models (eco-hydrodynamic model) were used to construct the strategy for preventing the bottom hypoxic water and improving or recovering the water quality in the lake. Using the model input obtained from the summertime data over 1998-2002, the summer-average flow field and oxygen concentration and budget of the standard run were calculated. Remedial measures used in this study are divided into two parts: the biogeochemical and physical changes in the present situation. For the remedial measures including the biogeochemical changes in the present situation, the simulations considering the reductions of the nutrient inputs from the river, main lake (land) and bottom sediment, and the sediment oxygen demand (SOD) were carried out. For the remedial measures including the physical changes, the 50 and 100 m extensions of the inlet width were considered in the model runs. These simulated results were compared in terms of changes in the dissolved oxygen (DO) concentration and oxygen budget in the bottom layer in the Inohana Lake. There was no significant change in the DO concentration and oxygen stock in the simulations for the reduction of the nutrient inputs from the land and bottom sediment, however increases in those in the simulations for the reduction of SOD. When SOD was reduced by 50%, the bottom DO concentration increased by approximately 2 mg/L and the oxygen stock in the bottom layer increased by 47% comparing the present situation (the standard run) of the lake. The simulation results for inlet width extension showed that the extension of width makes the DO concentration and oxygen stock lower. The remedial measures for the sediment control were proposed to prevent the bottom hypoxia and manage the water quality.
文摘The effect of two nighttime ventilation strategies on cooling and heating energy use is investigated for a prototype office building in several northern America climates, using hourly building energy simulation software (DOE2.1E). The strategies include: scheduled-driven nighttime ventilation and a predictive method for nighttime ventilation. The maximum possible energy savings and peak demand reduction in each climate is analyzed as a function of ventilation rate, indoor-outdoor temperature difference, and building thermal mass. The results show that nighttime ventilation could save up to 32% cooling energy in an office building, while the total energy and peak demand savings for the fan and cooling is about 13% and 10%, respectively. Consequently, finding the optimal control parameters for the nighttime ventilation strategies is very important. The performance of the two strategies varies in different climates. The predictive nighttime ventilation worked better in weather conditions with fairly smooth transition from heating to cooling season.
基金The first three authors who conducted this research were partly funded by the Industrial Assessment Center Project,supported by grants from the US Department of Energy and by the West Virginia Development Office.
文摘Building Energy Management Systems(BEMS)are computer-based systems that aid in managing,controlling,and monitoring the building technical services and energy consumption by equipment used in the building.The effectiveness of BEMS is dependent upon numerous factors,among which the operational characteristics of the building and the BEMS control parameters also play an essential role.This research develops a user-driven simulation tool where users can input the building parameters and BEMS controls to determine the effectiveness of their BEMS.The simulation tool gives the user the flexibility to understand the potential energy savings by employing specific BEMS control and help in making intelligent decisions.The simulation is developed using Visual Basic Application(VBA)in Microsoft Excel,based on discrete-event Monte Carlo Simulation(MCS).The simulation works by initially calculating the energy required for space cooling and heating based on current building parameters input by the user in the model.Further,during the second simulation,the user selects all the BEMS controls and improved building envelope to determine the energy required for space cooling and heating during that case.The model compares the energy consumption from the first simulation and the second simulation.Then the simulation model will provide the rating of the effectiveness of BEMS on a continuous scale of 1 to 5(1 being poor effectiveness and 5 being excellent effectiveness of BEMS).This work is intended to facilitate building owner/energy managers to analyze the building energy performance concerning the efficacy of their energy management system.
文摘Emergency ambulance services in the UK are tasked with providing pre-hospital patient care and clinical services with a target response time between call connect to on-scene attendance.In 2017,NHS England introduced four new response time categories based on patient needs.The most challenging is to be on-scene for a life-threatening situation within seven minutes of the call being connected when such calls are random in terms of time and place throughout a large territory.Recent evidence indicates emergency ambulance services regularly fall short of achieving the target ambulance response times set by the National Health Service(NHS).To achieve these targets,they need to undertake transformational change and apply statistical,operations research and artificial intelligence techniques in the form of five separate modules covering demand forecasting,plus locate,allocate,dispatch,monitoring and re-deployment of resources.These modules should be linked in real-time employing a data warehouse to minimise computational data and generate accurate,meaningful and timely decisions ensuring patients receive an appropriate and timely response.A simulation covering a limited geographical area,time and operational data concluded that this form of integration of the five modules provides accurate and timely data upon which to make decisions that effectively improve ambulance response times.
文摘针对模糊需求下的绿色两级车辆路径问题,以最小化车辆运营成本和油耗成本之和为优化目标,提出一种混合超启发式算法进行求解.首先,考虑两级问题解空间庞大且相互耦合,设计一种聚类分解策略将该问题分解为多个子问题,以合理缩小问题搜索空间;然后,提出增强超启发式分布估计算法(enhanced hyperheuristic estimation of distribution algorithm,EHHEDA)对各个子问题进行求解,进而获得原问题的解.EHHEDA基于超启发式算法框架,在高层策略域设计一种基于三维概率模型的分布估计算法,动态确定由底层操作域中各搜索算子所组成的排列(即高层个体),可有效控制和引导整个算法的搜索行为;同时,在底层操作域设计10种有效邻域搜索算子,并加入重升温操作的模拟退火机制作为问题解(即底层个体)的接受准则,有利于在问题解空间中执行深入搜索.仿真实验结果表明,所提出的算法在大多数测试集上优于近年来用于求解类似问题的算法,验证了所提出算法的有效性.