In an extraction turbine, pressure of the extracted steam and rotate speed of the rotor are two important controlled quantities. The traditional linear state feedback control method is not perfect enough to control th...In an extraction turbine, pressure of the extracted steam and rotate speed of the rotor are two important controlled quantities. The traditional linear state feedback control method is not perfect enough to control the two quantities accurately because of existence of nonlinearity and coupling. A generalized minimum variance control method is studied for an extraction turbine. Firstly, a nonlinear mathematical model of the control system about the two quantities is transformed into a linear system with two white noises. Secondly, a generalized minimum variance control law is applied to the system. A comparative simulation is done. The simulation results indicate that precision and dynamic quality of the regulating system under the new control law are both better than those under the state feedback control law.展开更多
The mathematical models of electro-hydraulic speed control system using series of pipesis presented. The principle of pipe effection on dynamics of the system is developed. Computersimulation and physical experiment a...The mathematical models of electro-hydraulic speed control system using series of pipesis presented. The principle of pipe effection on dynamics of the system is developed. Computersimulation and physical experiment are also carried out. The experimental results show that a rightchoosing of serial pipe for electro-hydraulic system enables the dynamic response of the system tobe improved effectively.展开更多
文摘In an extraction turbine, pressure of the extracted steam and rotate speed of the rotor are two important controlled quantities. The traditional linear state feedback control method is not perfect enough to control the two quantities accurately because of existence of nonlinearity and coupling. A generalized minimum variance control method is studied for an extraction turbine. Firstly, a nonlinear mathematical model of the control system about the two quantities is transformed into a linear system with two white noises. Secondly, a generalized minimum variance control law is applied to the system. A comparative simulation is done. The simulation results indicate that precision and dynamic quality of the regulating system under the new control law are both better than those under the state feedback control law.
文摘The mathematical models of electro-hydraulic speed control system using series of pipesis presented. The principle of pipe effection on dynamics of the system is developed. Computersimulation and physical experiment are also carried out. The experimental results show that a rightchoosing of serial pipe for electro-hydraulic system enables the dynamic response of the system tobe improved effectively.