Thermal cracking of hydrocarbons for olefin production is normally carried out in long reactor tubes suspended in a large gas fired furnace. In this paper, a coupled furnace-reactor mathematical model based on a com...Thermal cracking of hydrocarbons for olefin production is normally carried out in long reactor tubes suspended in a large gas fired furnace. In this paper, a coupled furnace-reactor mathematical model based on a computational fluid dynamics (CFD) technique is developed to simulate the complex fluid dynamics phenomena in the thermal cracking furnace. The model includes mass transfer, momentum transfer, and heat transfer, as well as thermal cracking reactions, fuel combustion and radiative heat transfer. The rationality and reliability of the mathematical model is confirmed by the approximate agreement of predicted data and industrial data. The coupled furnace-reactor simulation revealed the details of both the transfer and reaction processes taking place in the thermal cracking furnace. The results indicate highly nonuniform distribution of the flue-gas velocity, concentration and temperature in the furnace, which cause nonuniform distribution of tube skin temperature and heat flux of the reactor tubes. Profiles of oil-gas velocity, pressure, temperature and product yields in the lengthwise direction of the reactor tube are obtained. Furthermore, in the radial direction steep velocity and temperature gradients and relatively slight gradients of species concentration are found. In conclusion, the model can provide more information on the fluid dynamics and reaction behavior in the thermal cracking furnace, and guidance for the design and improvement of thermal cracking furnaces.展开更多
The hot cracking tendency of 7075 semi-solid alloy under different conditions was studied by critical diameter method.The experiment and simulation results show that the dendrite arms of the rod grow from the edge to ...The hot cracking tendency of 7075 semi-solid alloy under different conditions was studied by critical diameter method.The experiment and simulation results show that the dendrite arms of the rod grow from the edge to the center.The smaller the diameter of the rod is,the more obvious the directional growth of dendrite is,and the greater the tendency of hot cracking is.Compared with ordinary melt,for semi-solid slurry,increasing mould temperature or decreasing pouring temperature can significantly decrease hot cracking tendency of 7075 alloy,decreasing hot cracking grade from 256 to 100 mm^2.Furthermore,based on the RDG criterion,the effects of solidification conditions on the hot cracking tendency were discussed combined with simulation.At the same time,the application and development of RDG criterion were also researched.展开更多
When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large-sized steel castings, aluminum castings and etc. Some defects of hot cracking by therm...When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large-sized steel castings, aluminum castings and etc. Some defects of hot cracking by thermal stress often appear during solidification process as these castings are produced, which results in failure of castings. Therefore predicting the effects of technological parameters for production of castings on the thermal stress during solidification process becomes an important means. In this paper, the mathematical models have been established and numerical calculation of temperature fields by using finite difference method (FDM) and then thermal stress fields by using finite element method (FEM) during solidification process of castings have been carried out. The technological parameters of production have been optimized by the results of calculation and the defects of hot cracking have been eliminated. Modeling and simulation of 3D thermal stress during solidification processes of large-sized castings provided a scientific basis, which promoted further development of advanced manufacturing technique.展开更多
Thermal cracking of rocks can significantly affect the durability of underground structures in engineering practices such as geothermal energy extraction,storage of nuclear waste and tunnelling in freezeethaw cycle in...Thermal cracking of rocks can significantly affect the durability of underground structures in engineering practices such as geothermal energy extraction,storage of nuclear waste and tunnelling in freezeethaw cycle induced areas.It is a scenario of strong coupled thermomechanical process involving discontinuity behaviours of rocks.In this context,a numerical model was proposed to investigate the thermal cracking of rocks,in a framework of the continuous-discontinuous element method(CDEM)for efficiently capturing the initiation and propagation of multiple cracks.A simplex integration strategy was adopted to account for the influences of temperature-dependent material properties.Several benchmark tests were considered and the obtained results were compared with analytical solutions and numerical results from the literature.The results show that the fracture degree of the cases when considering temperature-dependent material parameters had 10%differences approximately compared with the cases with constant parameters.展开更多
This paper proposes a new, simple and efficient method for nonlinear simulation of arch dam cracking from the construction period to the operation period, which takes into account the arch dam construction process and...This paper proposes a new, simple and efficient method for nonlinear simulation of arch dam cracking from the construction period to the operation period, which takes into account the arch dam construction process and temperature loads. In the calculation mesh, the contact surface of pair nodes is located at places on the arch dam where cracking is possible. A new effective iterative method, the mixed finite element method for friction-contact problems, is improved and used for nonlinear simulation of the cracking process. The forces acting on the structure are divided into two parts: external forces and contact forces. The displacement of the structure is chosen as the basic variable and the nodal contact force in the possible contact region of the local coordinate system is chosen as the iterative variable, so that the nonlinear iterative process is only limited within the possible contact surface and is much more economical. This method was used to simulate the cracking process of the Shuanghe Arch Dam in Southwest China. In order to prove the validity and accuracy of this method and to study the effect of thermal stress on arch dam cracking, three schemes were designed for calculation. Numerical results agree with actual measured data, proving that it is feasible to use this method to simulate the entire process of nonlinear arch dam cracking.展开更多
Different mathematical models for ethylene furnace reactor tubes were reviewed. On the basis of these models a new mathematical simulation approach for reactor tubes based on computational fluid dynamics (CFD) techn...Different mathematical models for ethylene furnace reactor tubes were reviewed. On the basis of these models a new mathematical simulation approach for reactor tubes based on computational fluid dynamics (CFD) technique was presented. This approach took the flow, heat transfer, mass transfer and thermal cracking reactions in the reactor tubes into consideration. The coupled reactor model was solved with the SIMPLE algorithm. Some detailed information about the flow field, temperature field and concentration distribution in the reactor tubes was obtained, revealing the basic characteristics of the hydrodynamic phenomena and reaction behavior in the reactor tubes. The CFD approach provides the necessary information for conclusive decisions regarding the production optimization, the design and improvement of reactor tubes, and the new techniques implementation.展开更多
Herein,a hot cracking initiation criterion based on the characteristics of solidification liquid film and the microstructure was proposed,which integrated both the mechanical and non-mechanical factors during solidifi...Herein,a hot cracking initiation criterion based on the characteristics of solidification liquid film and the microstructure was proposed,which integrated both the mechanical and non-mechanical factors during solidification.The criterion also took the effect of the shrinkage volume of the solid-liquid two-phase in the mushy zone,the flow behavior of the liquid film and the microstructure on the feeding behavior into account.Meanwhile,the effect factors of hot cracking initiation such as alloy composition,microstructure,mold design and process condition were included in this criterion,and it could quantitatively calculate whether hot cracks occurred under a certain state or not during solidification.The criterion was utilized to predict whether hot cracks occurred in Al-4.0 wt%Cu alloy in different initial solidification states or not,which was consistent with the experimental results and verified its reliability.According to the criterion expression,Vfeeding*was related with five effect factors includingη,ΔP*,l*,r*and n,in which r*and n were in positive correlation with Vfeeding*whileη,ΔP*and l*were in negative correlation with that,which provided a good instructive significance for mold design,process optimization and composition and microstructure regulation of alloys and simultaneously further enriched the mechanism and influencing factors of hot cracking initiation.Furthermore,a multiscale simulation method for calculating the characteristic parameters of hot tearing behavior during solidification was also provided in this study.展开更多
文摘Thermal cracking of hydrocarbons for olefin production is normally carried out in long reactor tubes suspended in a large gas fired furnace. In this paper, a coupled furnace-reactor mathematical model based on a computational fluid dynamics (CFD) technique is developed to simulate the complex fluid dynamics phenomena in the thermal cracking furnace. The model includes mass transfer, momentum transfer, and heat transfer, as well as thermal cracking reactions, fuel combustion and radiative heat transfer. The rationality and reliability of the mathematical model is confirmed by the approximate agreement of predicted data and industrial data. The coupled furnace-reactor simulation revealed the details of both the transfer and reaction processes taking place in the thermal cracking furnace. The results indicate highly nonuniform distribution of the flue-gas velocity, concentration and temperature in the furnace, which cause nonuniform distribution of tube skin temperature and heat flux of the reactor tubes. Profiles of oil-gas velocity, pressure, temperature and product yields in the lengthwise direction of the reactor tube are obtained. Furthermore, in the radial direction steep velocity and temperature gradients and relatively slight gradients of species concentration are found. In conclusion, the model can provide more information on the fluid dynamics and reaction behavior in the thermal cracking furnace, and guidance for the design and improvement of thermal cracking furnaces.
基金Project(17YF1407100)supported by the Shanghai Sailing Program of ChinaProject(17PJ1408600)supported by Shanghai Pujiang Program of China
文摘The hot cracking tendency of 7075 semi-solid alloy under different conditions was studied by critical diameter method.The experiment and simulation results show that the dendrite arms of the rod grow from the edge to the center.The smaller the diameter of the rod is,the more obvious the directional growth of dendrite is,and the greater the tendency of hot cracking is.Compared with ordinary melt,for semi-solid slurry,increasing mould temperature or decreasing pouring temperature can significantly decrease hot cracking tendency of 7075 alloy,decreasing hot cracking grade from 256 to 100 mm^2.Furthermore,based on the RDG criterion,the effects of solidification conditions on the hot cracking tendency were discussed combined with simulation.At the same time,the application and development of RDG criterion were also researched.
文摘When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large-sized steel castings, aluminum castings and etc. Some defects of hot cracking by thermal stress often appear during solidification process as these castings are produced, which results in failure of castings. Therefore predicting the effects of technological parameters for production of castings on the thermal stress during solidification process becomes an important means. In this paper, the mathematical models have been established and numerical calculation of temperature fields by using finite difference method (FDM) and then thermal stress fields by using finite element method (FEM) during solidification process of castings have been carried out. The technological parameters of production have been optimized by the results of calculation and the defects of hot cracking have been eliminated. Modeling and simulation of 3D thermal stress during solidification processes of large-sized castings provided a scientific basis, which promoted further development of advanced manufacturing technique.
基金the financial support from the Natural Science Foundation of Hebei Province(Grant No.E2020050012)the National Natural Science Foundation of China(NSFC)(Grant No.52178324)the National Key Research and Development Project of China,the Ministry of Science and Technology of China(Grant No.2018YFC1505504).
文摘Thermal cracking of rocks can significantly affect the durability of underground structures in engineering practices such as geothermal energy extraction,storage of nuclear waste and tunnelling in freezeethaw cycle induced areas.It is a scenario of strong coupled thermomechanical process involving discontinuity behaviours of rocks.In this context,a numerical model was proposed to investigate the thermal cracking of rocks,in a framework of the continuous-discontinuous element method(CDEM)for efficiently capturing the initiation and propagation of multiple cracks.A simplex integration strategy was adopted to account for the influences of temperature-dependent material properties.Several benchmark tests were considered and the obtained results were compared with analytical solutions and numerical results from the literature.The results show that the fracture degree of the cases when considering temperature-dependent material parameters had 10%differences approximately compared with the cases with constant parameters.
基金supported by the National Nature Science Foundation of China (Grant No 90510017)
文摘This paper proposes a new, simple and efficient method for nonlinear simulation of arch dam cracking from the construction period to the operation period, which takes into account the arch dam construction process and temperature loads. In the calculation mesh, the contact surface of pair nodes is located at places on the arch dam where cracking is possible. A new effective iterative method, the mixed finite element method for friction-contact problems, is improved and used for nonlinear simulation of the cracking process. The forces acting on the structure are divided into two parts: external forces and contact forces. The displacement of the structure is chosen as the basic variable and the nodal contact force in the possible contact region of the local coordinate system is chosen as the iterative variable, so that the nonlinear iterative process is only limited within the possible contact surface and is much more economical. This method was used to simulate the cracking process of the Shuanghe Arch Dam in Southwest China. In order to prove the validity and accuracy of this method and to study the effect of thermal stress on arch dam cracking, three schemes were designed for calculation. Numerical results agree with actual measured data, proving that it is feasible to use this method to simulate the entire process of nonlinear arch dam cracking.
文摘Different mathematical models for ethylene furnace reactor tubes were reviewed. On the basis of these models a new mathematical simulation approach for reactor tubes based on computational fluid dynamics (CFD) technique was presented. This approach took the flow, heat transfer, mass transfer and thermal cracking reactions in the reactor tubes into consideration. The coupled reactor model was solved with the SIMPLE algorithm. Some detailed information about the flow field, temperature field and concentration distribution in the reactor tubes was obtained, revealing the basic characteristics of the hydrodynamic phenomena and reaction behavior in the reactor tubes. The CFD approach provides the necessary information for conclusive decisions regarding the production optimization, the design and improvement of reactor tubes, and the new techniques implementation.
基金the National Natural Science Foundation of China(No.51875365).
文摘Herein,a hot cracking initiation criterion based on the characteristics of solidification liquid film and the microstructure was proposed,which integrated both the mechanical and non-mechanical factors during solidification.The criterion also took the effect of the shrinkage volume of the solid-liquid two-phase in the mushy zone,the flow behavior of the liquid film and the microstructure on the feeding behavior into account.Meanwhile,the effect factors of hot cracking initiation such as alloy composition,microstructure,mold design and process condition were included in this criterion,and it could quantitatively calculate whether hot cracks occurred under a certain state or not during solidification.The criterion was utilized to predict whether hot cracks occurred in Al-4.0 wt%Cu alloy in different initial solidification states or not,which was consistent with the experimental results and verified its reliability.According to the criterion expression,Vfeeding*was related with five effect factors includingη,ΔP*,l*,r*and n,in which r*and n were in positive correlation with Vfeeding*whileη,ΔP*and l*were in negative correlation with that,which provided a good instructive significance for mold design,process optimization and composition and microstructure regulation of alloys and simultaneously further enriched the mechanism and influencing factors of hot cracking initiation.Furthermore,a multiscale simulation method for calculating the characteristic parameters of hot tearing behavior during solidification was also provided in this study.