Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for simultaneous multislice imaging has been proposed recently, which combines multiband excitation and phase cycling techniques to...Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for simultaneous multislice imaging has been proposed recently, which combines multiband excitation and phase cycling techniques to reduce scan time and improve subsequent imaging reconstruction. In this work, the total variation (TV) regularization method is used to further improve CAIPIRINHA. The TV regularization uses an edge-preserving prior, which establishes a relationship between neighboring pixels for image reconstruction. It reduces artifacts and suppresses noise amplification simultaneously. The results are presented with a standard eight-channel head coil with an acceleration factor of 4, where the TV-regularized CAIPIRINHA generates an improved reconstruction as compared with a typical nonregularized CAIPIRINHA.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61671026)the Natural Science Foundation of Beijing,China(Grant No.7162112)
文摘Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for simultaneous multislice imaging has been proposed recently, which combines multiband excitation and phase cycling techniques to reduce scan time and improve subsequent imaging reconstruction. In this work, the total variation (TV) regularization method is used to further improve CAIPIRINHA. The TV regularization uses an edge-preserving prior, which establishes a relationship between neighboring pixels for image reconstruction. It reduces artifacts and suppresses noise amplification simultaneously. The results are presented with a standard eight-channel head coil with an acceleration factor of 4, where the TV-regularized CAIPIRINHA generates an improved reconstruction as compared with a typical nonregularized CAIPIRINHA.