In this study, simultaneous nitrification and autotrophic denitrification (SNAD) with either elemental sulfur or pyrite were investigated in fluidized bed reactors in mesophilic conditions. The reactor performance was...In this study, simultaneous nitrification and autotrophic denitrification (SNAD) with either elemental sulfur or pyrite were investigated in fluidized bed reactors in mesophilic conditions. The reactor performance was evaluated at different ammonium (12-40 mg/L of NH4+-N), nitrate (35-45 mg/L of NO3--N), and dissolved oxygen (DO) (0.1-1.5 mg/L) concentrations, with a hydraulic retention time of 12 h. The pyrite reactor supported the SNAD process with a maximum nitrogen removal efficiency of 139.5 mg/(L·d) when the DO concentration was in the range of 0.8-1.5 mg/L. This range, however, limited the denitrification efficiency of the reactor, which decreased from 90.0% ± 5.3% in phases II-V to 67.9% ± 7.2% in phases VI and VII. Sulfate precipitated as iron sulfate (FeSO4/Fe2(SO4)3) and sodium sulfate (Na2SO4) minerals during the experiment. The sulfur reactor did not respond well to nitrification with a low and unstable ammonium removal efficiency, while denitrification occurred with a nitrate removal efficiency of 97.8%. In the pyrite system, the nitrifying bacterium Nitrosomonas sp. was present, and its relative abundance increased from 0.1% to 1.1%, while the autotrophic denitrifying genera Terrimonas, Ferruginibacter, and Denitratimonas dominated the community. Thiobacillus, Sulfurovum, and Trichlorobacter were the most abundant genera in the sulfur reactor during the entire experiment.展开更多
The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates. Biological occurrence...The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates. Biological occurrence of simultaneous nitrification and denitrification was verified in the aspect of nitrogen mass balance and alkalinity. The experimental results also showed that there was a distinct linear relationship between simultaneous nitrification and denitrification and DO concentration under the conditions of low and high aeration flow rate. In each experimental run the floc sizes of activated sludge were also measured and the results showed that simultaneous nitrification and denitrification could occur with very small size of floc.展开更多
Sequence hybrid biological reactor (SHBR) was proposed, and some key control parameters were investigated for nitrogen removal from wastewater by simultaneous nitrification and denitrification (SND) via nitrite. S...Sequence hybrid biological reactor (SHBR) was proposed, and some key control parameters were investigated for nitrogen removal from wastewater by simultaneous nitrification and denitrification (SND) via nitrite. SND via nitrite was achieved in SHBR by controlling demand oxygen (DO) concentration. There was a programmed decrease of the DO from 2.50 mg·L^-1 to 0.30 mg·L^-1, and the average nitrite accumulation rate (NAR) was increased from 16.5% to 95.5% in 3 weeks. Subsequently, further increase in DO concentration to 1.50 mg·L^-1 did not destroy the partial nitrification to nitrite. The results showed that limited air flow rate to cause oxygen deficiency in the reactor would eventually induce only nitrification to nitrite and not further to nitrate. Nitrogen removal efficiency was increased with the increase in NAR, that is, NAR was increased from 60% to 90%, and total nitrogen removal efficiency was increased from 68% to 85%. The SHBR could tolerate high organic loading rate (OLR), COD and ammonia-nitrogen removal efficiency were greater than 92% and 93.5%, respectively,, and it even operated under low DO concentration (0.5 mg·L^-1) and maintained high OLR (4.0 kg COD·m^-3·d^-1). The presence of biofilm positively affected the activated sludge settling capability, and sludge volume index (SVI) of activated sludge in SHBR never hit more than 90 ml·L^-1 throughout the experiments.展开更多
The ability of simultaneous biological phosphorus and nitrogen removal was investigated in a lab-scale continuous-flow two-sludge system. Alternating anaerobic and anoxic conditions were combined with contact oxidatio...The ability of simultaneous biological phosphorus and nitrogen removal was investigated in a lab-scale continuous-flow two-sludge system. Alternating anaerobic and anoxic conditions were combined with contact oxidation stage for treating raw municipal wastewater. Long-term experiments showed that the contradiction of competing for the organic substrate between denitrifying bacteria and PAOs (phosphorus accumulating organisms) in traditional phosphorus and nitrogen removal system has been resolved. The system can adapt to low influent COD/TN ratio (C/N). Furthermore the SRT (sludge retention time) of nitrifying sludge and denitrifying phosphorus removal sludge can be controlled at optimal conditions respectively. The removal efficiency of COD, TP, TN, and NH4-N was 81.78%, 92.51%, 75.75%, and 84.47% respectively. It was also found that the appropriate influent C/N should be controlled at the range of 3.8-6, while the optimal C/N to the system ranged between 4-5, and the BFR (bypass sludge flow rate) should be controlled at 0.35 around.展开更多
Performance of a full-scale anoxic-oxic activated sludge treatment plant(4.0×10-5 m-3/day for the first-stage project) was followed during a year.The plant performed well for the removal of carbon,nitrogen and ...Performance of a full-scale anoxic-oxic activated sludge treatment plant(4.0×10-5 m-3/day for the first-stage project) was followed during a year.The plant performed well for the removal of carbon,nitrogen and phosphorus in the process of treating domestic wastewater within a temperature range of 10.8℃ to 30.5℃.Mass balance calculations indicated that COD utilization mainly occurred in the anoxic phase,accounting for 88.2% of total COD removal.Ammonia nitrogen removal occurred 13.71% in the anoxic zones and 78.77% in the aerobic zones.The contribution of anoxic zones to total nitrogen(TN) removal was 57.41%.Results indicated that nitrogen elimination in the oxic tanks was mainly contributed by simultaneous nitrification and denitrification(SND).The reduction of phosphorus mainly took place in the oxic zones,51.45% of the total removal.Denitrifying phosphorus removal was achieved biologically by 11.29%.Practical experience proved that adaptability to gradually changing temperature of the microbial populations was important to maintain the plant overall stability.Sudden changes in temperature did not cause paralysis of the system just lower removal efficiency,which could be explained by functional redundancy of microorganisms that may compensate the adverse effects of temperature changes to a certain degree.Anoxic-oxic process without internal recycling has great potential to treat low strength wastewater(i.e.,TN 〈 35 mg/L) as well as reducing operation costs.展开更多
To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was...To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was studied in a pilot-scale, anaerobicanoxic oxidation ditch (OD), where the volumes of anaerobic zone, anoxic zone, and ditches zone of the OD system were 7, 21, and 280 L, respectively. The reactor was fed with municipal wastewater with a flow rate of 336 L/d. The concept of simultaneous nitrification and denitrification (SND) rate (rSND) was put forward to quantify SND. The results indicate that: (1) high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase, total nitrogen (TN) and total phosphate (TP) removal rates were 80% and 85%, respectively; (2) when the system was aerated excessively, the stability of SND was damaged, and rSND dropped from 80% to 20% or less; (3) the natural logarithm of the ratio of NOx to NH4^+ in the effluent had a linear correlation to oxidation-reduction potential (ORP); (4) when NO3^- was less than 6 mg/L, high phosphorus removal efficiency could be achieved; (5) denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system. The major innovation was that the SND rate was devised and quantified.展开更多
In the biofilm and activated sludge combined system, denitrifying bacteria attached on the fibrous carriers in the anoxic tank, while the sludge containing nitrifying and phosphorus removal bacteria was only recircula...In the biofilm and activated sludge combined system, denitrifying bacteria attached on the fibrous carriers in the anoxic tank, while the sludge containing nitrifying and phosphorus removal bacteria was only recirculated between the aerobic and anaerobic tanks. Therefore, the factors affected and restricted nitrification, denitrification and phosphorus removal in a traditional A/A/O process were resolved. This paper describes the optimum operation conditions for nitrogen and phosphorus removal using this system.展开更多
A pilot-scale Orbed oxidation ditch was operated for 17 months to optimize nitrogen removal from domestic wastewater of average COD to total nitrogen ratio of 2.7, with particular concern about the roles of dissolved ...A pilot-scale Orbed oxidation ditch was operated for 17 months to optimize nitrogen removal from domestic wastewater of average COD to total nitrogen ratio of 2.7, with particular concern about the roles of dissolved oxygen (DO), mixed liquor suspended solids (MLSS) and return activated sludge (RAS) recycle ratio. Remarkable simultaneous nitrification and denitrification (SND) was observed and mean total nitrogen (TN) removal efficiency up to 72.1% was steadily achieved, at DO concentration in the out, middle and inner channel of 0.1, 0.4 and 0.7 mg/L, respectively, with an average M LSS of 5.5 g/L and RAS recycle ratio of 150%. Although the out channel took the major role in TN removal, the role of middle channel should never be ignored. The denitrification potential could be fully developed under low DO, high MLSS with adequate RAS ratio. The sludge settleability was amazingly improved under low DO operation mode, and some explanations were tried. In addition, a scries of simplified batch tests were done to determine whether novel microorganisms could make substantial contribution to the performance of nitrogen removal. The results indicated that the SND observed in this Orbal oxidation ditch was more likely a physical phenomenon.展开更多
A pilot scale modified step-feed process was lmproved to increase nutrient/N ano P) ano organic removal operations from municipal wastewater. It combined the step-feed process and a method named "University of Cape ...A pilot scale modified step-feed process was lmproved to increase nutrient/N ano P) ano organic removal operations from municipal wastewater. It combined the step-feed process and a method named "University of Cape Town (UCT)". The effect of nutrient ratios and inflow distribution ratios were studied. The highest uptake efficiency of 95% for chemical oxygen demand (COD) has been achieved at the inflow distribution ratio of 40/35/25. However, maximum removal efficiency obtained for total nitrogen (TN) and phosphorus at 93% and 78%, respectively. The average mixed liquor suspended solids (MLSS) was 5500 mg·L- 1. In addition, convenient values for dissolved oxygen (DO) concentration, and pH were obtained throughout different stages. The proposed system was identified to be an appropriate enhanced biological nutrient removal process for wastewater treatment plants owing to relatively high nutrient removal, sturdy sludge settle ability and COD removal.展开更多
A two-stage upflow biological aerated filter was designed as an advanced treatment process to optimize the operating parameters and study the correlative factors influencing the efficiency of nitrification, denitrific...A two-stage upflow biological aerated filter was designed as an advanced treatment process to optimize the operating parameters and study the correlative factors influencing the efficiency of nitrification, denitrification and phosphorus removal. The experimental results showed that the final effluent of the two-stage upflow biofilter process operated in series could meet the stringent limits of the reclaimed water for the total nitrogen of 2 mg/L, and total phosphorus of 0.3 mg/L. The high treatment efficiency allowed the reactor operating at very high hydraulic loadings and reaching nearly complete nitrification and denitrifieation.展开更多
An advanced sludge reduction process, i.e. sludge reduction and phosphorous removal process, was developed. The results show that excellent sludge reduction and biological phosphorous removal can be achieved perfectly...An advanced sludge reduction process, i.e. sludge reduction and phosphorous removal process, was developed. The results show that excellent sludge reduction and biological phosphorous removal can be achieved perfectly in this system. When chemical oxygen demand ρ(COD) is 332 - 420 mg/L, concentration of ammonia p(NH3-N) is 30 - 40 mg/L and concentration of total phosphorous p(TP) is 6.0 -9.0 mg/L in influent, the system still ensures ρ(COD)〈23 mg/L, ρ(NH3-N)〈3.2 mg/L and ρ(TP)〈0. 72 mg/L in effluent. Besides, when the concentration of dissolved oxygen ρ(DO) is around 1.0 mg/L, sludge production is less than 0. 140 g with the consumption of 1 g COD, and the phosphorous removal exceeds 91 %. Also, 48.4% of total nitrogen is removed by simultaneous nitrification and denitrification.展开更多
基金supported by the Science Foundation Ireland(SFI)through the SFI Research Professorship Programme entitled"Innovative Energy Technologies for Biofuels,Bioenergy and a Sustainable Irish Bioeconomy"(IETSBIO3Grant No.15/RP/2763)the Research Infrastructure Research Grant Platform for Biofuel Analysis(Grant No.16/RI/3401).
文摘In this study, simultaneous nitrification and autotrophic denitrification (SNAD) with either elemental sulfur or pyrite were investigated in fluidized bed reactors in mesophilic conditions. The reactor performance was evaluated at different ammonium (12-40 mg/L of NH4+-N), nitrate (35-45 mg/L of NO3--N), and dissolved oxygen (DO) (0.1-1.5 mg/L) concentrations, with a hydraulic retention time of 12 h. The pyrite reactor supported the SNAD process with a maximum nitrogen removal efficiency of 139.5 mg/(L·d) when the DO concentration was in the range of 0.8-1.5 mg/L. This range, however, limited the denitrification efficiency of the reactor, which decreased from 90.0% ± 5.3% in phases II-V to 67.9% ± 7.2% in phases VI and VII. Sulfate precipitated as iron sulfate (FeSO4/Fe2(SO4)3) and sodium sulfate (Na2SO4) minerals during the experiment. The sulfur reactor did not respond well to nitrification with a low and unstable ammonium removal efficiency, while denitrification occurred with a nitrate removal efficiency of 97.8%. In the pyrite system, the nitrifying bacterium Nitrosomonas sp. was present, and its relative abundance increased from 0.1% to 1.1%, while the autotrophic denitrifying genera Terrimonas, Ferruginibacter, and Denitratimonas dominated the community. Thiobacillus, Sulfurovum, and Trichlorobacter were the most abundant genera in the sulfur reactor during the entire experiment.
基金Project supported by the Key International Cooperative Program of NSFC(No. 50521140075)the Hi-Tech Research and Development Program(863)of China(No. 2004AA601020)the Attached Projects of"863"Project of Beijing Municipal Science and Technology(No.20005186040421).
文摘The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates. Biological occurrence of simultaneous nitrification and denitrification was verified in the aspect of nitrogen mass balance and alkalinity. The experimental results also showed that there was a distinct linear relationship between simultaneous nitrification and denitrification and DO concentration under the conditions of low and high aeration flow rate. In each experimental run the floc sizes of activated sludge were also measured and the results showed that simultaneous nitrification and denitrification could occur with very small size of floc.
基金the National Key Project of Scientific and Technical Supporting Program of Ministry of Science and Technology ofChina(2006BAC19B03)Academic Human Resources Development in Institutions of Higher Leading under the Jurisdiction ofBeijing Municipalitythe Specialized Research Fund for the Doctoral Program of Higher Education of China(20060005002).
文摘Sequence hybrid biological reactor (SHBR) was proposed, and some key control parameters were investigated for nitrogen removal from wastewater by simultaneous nitrification and denitrification (SND) via nitrite. SND via nitrite was achieved in SHBR by controlling demand oxygen (DO) concentration. There was a programmed decrease of the DO from 2.50 mg·L^-1 to 0.30 mg·L^-1, and the average nitrite accumulation rate (NAR) was increased from 16.5% to 95.5% in 3 weeks. Subsequently, further increase in DO concentration to 1.50 mg·L^-1 did not destroy the partial nitrification to nitrite. The results showed that limited air flow rate to cause oxygen deficiency in the reactor would eventually induce only nitrification to nitrite and not further to nitrate. Nitrogen removal efficiency was increased with the increase in NAR, that is, NAR was increased from 60% to 90%, and total nitrogen removal efficiency was increased from 68% to 85%. The SHBR could tolerate high organic loading rate (OLR), COD and ammonia-nitrogen removal efficiency were greater than 92% and 93.5%, respectively,, and it even operated under low DO concentration (0.5 mg·L^-1) and maintained high OLR (4.0 kg COD·m^-3·d^-1). The presence of biofilm positively affected the activated sludge settling capability, and sludge volume index (SVI) of activated sludge in SHBR never hit more than 90 ml·L^-1 throughout the experiments.
文摘The ability of simultaneous biological phosphorus and nitrogen removal was investigated in a lab-scale continuous-flow two-sludge system. Alternating anaerobic and anoxic conditions were combined with contact oxidation stage for treating raw municipal wastewater. Long-term experiments showed that the contradiction of competing for the organic substrate between denitrifying bacteria and PAOs (phosphorus accumulating organisms) in traditional phosphorus and nitrogen removal system has been resolved. The system can adapt to low influent COD/TN ratio (C/N). Furthermore the SRT (sludge retention time) of nitrifying sludge and denitrifying phosphorus removal sludge can be controlled at optimal conditions respectively. The removal efficiency of COD, TP, TN, and NH4-N was 81.78%, 92.51%, 75.75%, and 84.47% respectively. It was also found that the appropriate influent C/N should be controlled at the range of 3.8-6, while the optimal C/N to the system ranged between 4-5, and the BFR (bypass sludge flow rate) should be controlled at 0.35 around.
基金supported by the National High Technology Research and Development Program (863 Program) of China (No. 2012AA063302)the Jiangsu Water Protection Project (No. 2015005)
文摘Performance of a full-scale anoxic-oxic activated sludge treatment plant(4.0×10-5 m-3/day for the first-stage project) was followed during a year.The plant performed well for the removal of carbon,nitrogen and phosphorus in the process of treating domestic wastewater within a temperature range of 10.8℃ to 30.5℃.Mass balance calculations indicated that COD utilization mainly occurred in the anoxic phase,accounting for 88.2% of total COD removal.Ammonia nitrogen removal occurred 13.71% in the anoxic zones and 78.77% in the aerobic zones.The contribution of anoxic zones to total nitrogen(TN) removal was 57.41%.Results indicated that nitrogen elimination in the oxic tanks was mainly contributed by simultaneous nitrification and denitrification(SND).The reduction of phosphorus mainly took place in the oxic zones,51.45% of the total removal.Denitrifying phosphorus removal was achieved biologically by 11.29%.Practical experience proved that adaptability to gradually changing temperature of the microbial populations was important to maintain the plant overall stability.Sudden changes in temperature did not cause paralysis of the system just lower removal efficiency,which could be explained by functional redundancy of microorganisms that may compensate the adverse effects of temperature changes to a certain degree.Anoxic-oxic process without internal recycling has great potential to treat low strength wastewater(i.e.,TN 〈 35 mg/L) as well as reducing operation costs.
文摘To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was studied in a pilot-scale, anaerobicanoxic oxidation ditch (OD), where the volumes of anaerobic zone, anoxic zone, and ditches zone of the OD system were 7, 21, and 280 L, respectively. The reactor was fed with municipal wastewater with a flow rate of 336 L/d. The concept of simultaneous nitrification and denitrification (SND) rate (rSND) was put forward to quantify SND. The results indicate that: (1) high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase, total nitrogen (TN) and total phosphate (TP) removal rates were 80% and 85%, respectively; (2) when the system was aerated excessively, the stability of SND was damaged, and rSND dropped from 80% to 20% or less; (3) the natural logarithm of the ratio of NOx to NH4^+ in the effluent had a linear correlation to oxidation-reduction potential (ORP); (4) when NO3^- was less than 6 mg/L, high phosphorus removal efficiency could be achieved; (5) denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system. The major innovation was that the SND rate was devised and quantified.
文摘In the biofilm and activated sludge combined system, denitrifying bacteria attached on the fibrous carriers in the anoxic tank, while the sludge containing nitrifying and phosphorus removal bacteria was only recirculated between the aerobic and anaerobic tanks. Therefore, the factors affected and restricted nitrification, denitrification and phosphorus removal in a traditional A/A/O process were resolved. This paper describes the optimum operation conditions for nitrogen and phosphorus removal using this system.
基金The Key International Cooperative Programs of National Natural Science Foundation of China (No. 50521140075) and the NationalNatural Science Foundation of China (No. 50478040)
文摘A pilot-scale Orbed oxidation ditch was operated for 17 months to optimize nitrogen removal from domestic wastewater of average COD to total nitrogen ratio of 2.7, with particular concern about the roles of dissolved oxygen (DO), mixed liquor suspended solids (MLSS) and return activated sludge (RAS) recycle ratio. Remarkable simultaneous nitrification and denitrification (SND) was observed and mean total nitrogen (TN) removal efficiency up to 72.1% was steadily achieved, at DO concentration in the out, middle and inner channel of 0.1, 0.4 and 0.7 mg/L, respectively, with an average M LSS of 5.5 g/L and RAS recycle ratio of 150%. Although the out channel took the major role in TN removal, the role of middle channel should never be ignored. The denitrification potential could be fully developed under low DO, high MLSS with adequate RAS ratio. The sludge settleability was amazingly improved under low DO operation mode, and some explanations were tried. In addition, a scries of simplified batch tests were done to determine whether novel microorganisms could make substantial contribution to the performance of nitrogen removal. The results indicated that the SND observed in this Orbal oxidation ditch was more likely a physical phenomenon.
文摘A pilot scale modified step-feed process was lmproved to increase nutrient/N ano P) ano organic removal operations from municipal wastewater. It combined the step-feed process and a method named "University of Cape Town (UCT)". The effect of nutrient ratios and inflow distribution ratios were studied. The highest uptake efficiency of 95% for chemical oxygen demand (COD) has been achieved at the inflow distribution ratio of 40/35/25. However, maximum removal efficiency obtained for total nitrogen (TN) and phosphorus at 93% and 78%, respectively. The average mixed liquor suspended solids (MLSS) was 5500 mg·L- 1. In addition, convenient values for dissolved oxygen (DO) concentration, and pH were obtained throughout different stages. The proposed system was identified to be an appropriate enhanced biological nutrient removal process for wastewater treatment plants owing to relatively high nutrient removal, sturdy sludge settle ability and COD removal.
基金Sponsored by the National Natural Science Foundation of China(5052114007550478084)
文摘A two-stage upflow biological aerated filter was designed as an advanced treatment process to optimize the operating parameters and study the correlative factors influencing the efficiency of nitrification, denitrification and phosphorus removal. The experimental results showed that the final effluent of the two-stage upflow biofilter process operated in series could meet the stringent limits of the reclaimed water for the total nitrogen of 2 mg/L, and total phosphorus of 0.3 mg/L. The high treatment efficiency allowed the reactor operating at very high hydraulic loadings and reaching nearly complete nitrification and denitrifieation.
基金Project (50278101) supported by the National Natural Science Foundation of China Project( CSTC, 2005AB7030)supported by Chongqing Key Technologies Research and Development Program
文摘An advanced sludge reduction process, i.e. sludge reduction and phosphorous removal process, was developed. The results show that excellent sludge reduction and biological phosphorous removal can be achieved perfectly in this system. When chemical oxygen demand ρ(COD) is 332 - 420 mg/L, concentration of ammonia p(NH3-N) is 30 - 40 mg/L and concentration of total phosphorous p(TP) is 6.0 -9.0 mg/L in influent, the system still ensures ρ(COD)〈23 mg/L, ρ(NH3-N)〈3.2 mg/L and ρ(TP)〈0. 72 mg/L in effluent. Besides, when the concentration of dissolved oxygen ρ(DO) is around 1.0 mg/L, sludge production is less than 0. 140 g with the consumption of 1 g COD, and the phosphorous removal exceeds 91 %. Also, 48.4% of total nitrogen is removed by simultaneous nitrification and denitrification.