Microbial fuel cells(MFCs) have become a promising technology for wastewater treatment accompanying electricity generation. Carbon and nitrogen removal can be achieved by utilizing the electron transfer between the ...Microbial fuel cells(MFCs) have become a promising technology for wastewater treatment accompanying electricity generation. Carbon and nitrogen removal can be achieved by utilizing the electron transfer between the anode and cathode in an MFC. However,large-scale power production and high removal efficiency must be achieved at a low cost to make MFCs practical and economically competitive in the future. This article reviews the principles, feasibility and bottlenecks of MFCs for simultaneous carbon and nitrogen removal, the recent advances and prospective strategies for performance improvement, as well as the involved microbes and electron transfer mechanisms.展开更多
Two parallel carbon-membrane aerated biofilm reactors were operated at well-defined conditions to investigate the effect of substrate COD/N ratios on the performance and microbial community structure of the bioreactor...Two parallel carbon-membrane aerated biofilm reactors were operated at well-defined conditions to investigate the effect of substrate COD/N ratios on the performance and microbial community structure of the bioreactor. Results showed that at substrate COD/N of 5, organic and nitrogen could be eliminated simultaneously, and COD removal degree, nitrification and denitrification efficiency reached 85%, 93% and 92%, respectively. With increasing substrate COD/N ratios, the specific oxygen utilization rates of nitrifying bacteria in biofilm were found to decrease, indicating that nitrifying population became less dominant. At substrate COD/N ratio of 6, excessive heterotrophs inhibited the activity of nitrifying bacteria greatly and thus led to poor nitrification process. With the help of fluorescence in situ hybridization (FISH), Nitrosomonas and Nitrosospira were identified as dominant ammonia-oxidizing bacteria in the biofilm at substrate COD/N of 0, whereas only Nitrosospira were detected in the biofilm at COD/N ratio of 5. Nitrospira were present as dominant nitrite-oxidizing bacteria in our study. Confocal laser scanning microscopy images revealed that at substrate COD/N ratio of 0 nitrifying bacteria existed throughout the biofilm and that at COD/N ratio of 5 they were mainly distributed in the inner layer of biofilm.展开更多
基金supported by the "Knowledge Innovation" Program of the Chinese Academy of Sciences (Nos. KZZD-EW09-3 and KSCX2-EW-B-1-5)the National Water Pollution Control and Treatment Science and Technology Major Project (No. 2015ZX07206-006)the Key Technologies R&D Program of China (No. 2014BAD14B01)
文摘Microbial fuel cells(MFCs) have become a promising technology for wastewater treatment accompanying electricity generation. Carbon and nitrogen removal can be achieved by utilizing the electron transfer between the anode and cathode in an MFC. However,large-scale power production and high removal efficiency must be achieved at a low cost to make MFCs practical and economically competitive in the future. This article reviews the principles, feasibility and bottlenecks of MFCs for simultaneous carbon and nitrogen removal, the recent advances and prospective strategies for performance improvement, as well as the involved microbes and electron transfer mechanisms.
基金supported by the National Science Council of China (No.50578023)
文摘Two parallel carbon-membrane aerated biofilm reactors were operated at well-defined conditions to investigate the effect of substrate COD/N ratios on the performance and microbial community structure of the bioreactor. Results showed that at substrate COD/N of 5, organic and nitrogen could be eliminated simultaneously, and COD removal degree, nitrification and denitrification efficiency reached 85%, 93% and 92%, respectively. With increasing substrate COD/N ratios, the specific oxygen utilization rates of nitrifying bacteria in biofilm were found to decrease, indicating that nitrifying population became less dominant. At substrate COD/N ratio of 6, excessive heterotrophs inhibited the activity of nitrifying bacteria greatly and thus led to poor nitrification process. With the help of fluorescence in situ hybridization (FISH), Nitrosomonas and Nitrosospira were identified as dominant ammonia-oxidizing bacteria in the biofilm at substrate COD/N of 0, whereas only Nitrosospira were detected in the biofilm at COD/N ratio of 5. Nitrospira were present as dominant nitrite-oxidizing bacteria in our study. Confocal laser scanning microscopy images revealed that at substrate COD/N ratio of 0 nitrifying bacteria existed throughout the biofilm and that at COD/N ratio of 5 they were mainly distributed in the inner layer of biofilm.