期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Simultaneous resonance of an axially moving ferromagnetic thin plate under a line load in a time-varying magnetic field
1
作者 Xie Mengxue Hu Yuda Xu Haoran 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第4期951-963,共13页
In this paper,the simultaneous resonance of a ferromagnetic thin plate in a time-varying magnetic field,having axial speed and being subjected to a periodic line load,is studied.Based on the large deflection theory of... In this paper,the simultaneous resonance of a ferromagnetic thin plate in a time-varying magnetic field,having axial speed and being subjected to a periodic line load,is studied.Based on the large deflection theory of thin plates and electromagnetic field theory,the nonlinear vibration differential equation of the plate is obtained by using the Hamilton′s principle and the Galerkin method.Then the boundary condition in which the longer opposite sides are clamped and hinged is considered.The dimensionless nonlinear differential equations are solved by using the method of multiple scales,and the analytical solution is given.In addition,the stability analysis is also carried out by using Lyapunov stability theory.Through numerical analysis,the variation curves of system resonance amplitude with frequency tuning parameter,magnetic field strength and external excitation amplitude are obtained.Different parameters that have significant effects on the response of the system,such as the thickness,the axial velocity,the magnetic field intensity,the position,and the frequency of external excitation,are considered and analyzed.The results show that the system has multiple solution regions and obvious nonlinear coupled characteristics. 展开更多
关键词 ferromagnetic thin plate time-varying magnetic field simultaneous resonance axially moving line load
下载PDF
Numerical simulation of flow interference between four cylinders in in-line square arrangement
2
作者 徐枫 欧进萍 肖仪清 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第1期113-120,共8页
In the present paper,two-and three-dimensional numerical simulations of the flow interference between four cylinders in an in-line square arrangement at Re = 200 are performed.Assisted with the two-dimensional(2-D) nu... In the present paper,two-and three-dimensional numerical simulations of the flow interference between four cylinders in an in-line square arrangement at Re = 200 are performed.Assisted with the two-dimensional(2-D) numerical simulation,the mean and fluctuating forces,Strouhal number(St) and vortex shedding pattern in the wake for each cylinder were analyzed with the spacing ratio(L /D) ranging from 1.5 to 6.0.It was found that,four different vortex modes(viz.,flip-flopping,shielding anti-phase-synchronized,in-phasesynchronized and anti-phase-synchronized) gradually appear with the increase of the L/D ratio.The average drag coefficient of the upstream cylinders is larger than that of the downstream cylinders,while the downstream cylinders usually undergo serious fluctuating forces.When the L/D ratio ranges from 3.0 to 4.0,the dominant frequency of the drag coefficient is equal to the value of St of upstream cylinders.This indicates that a simultaneous resonance in the in-flow and cross-flow directions may occur for some single structures of a multi-body oscillating system.For the 3-D numerical simulation,the L/D and aspect ratios are kept constant as 5.0 and 10,respectively.It was found that some vortices are formed in the wake of the upstream cylinders.Besides,with the same spacing ratio,the calculated drag coefficient and lift coefficient fluctuation are slightly larger than the 2-D results,but with a phase difference. 展开更多
关键词 four cylinders vortex shedding pattern flow interference simultaneous resonance three-dimensional numerical simulation
下载PDF
Simultaneous measurement of refractive index and temperature using a microring resonator 被引量:1
3
作者 林奈 姜澜 +2 位作者 王素梅 袁雷 陈强华 《Chinese Optics Letters》 SCIE EI CAS CSCD 2012年第5期66-69,共4页
An approach to the simultaneous optical ring resonators is proposed measurement of refractive-index (RI) and theoretically demonstrated. With and temperature changes using a liquid-core silica ring resonator as an e... An approach to the simultaneous optical ring resonators is proposed measurement of refractive-index (RI) and theoretically demonstrated. With and temperature changes using a liquid-core silica ring resonator as an example, two different-order whispering gallery modes (WGMs) might differ in not only RI but also temperature sensitivities. Thus, a second-order sensing matrix should be defined based on these WGMs to determine RI and temperature changes simultaneously. The analysis shows that the RI and temperature detection limits can be achieved on the order of 10.7 RI unit and 10-3 K at a wavelength of approximately 780 nm. 展开更多
关键词 In RI simultaneous measurement of refractive index and temperature using a microring resonator
原文传递
Observation of photoacoustic/photothermal effect with a liquid-core optical ring resonator
4
作者 郭焕菁 金龙 +1 位作者 马军 关柏鸥 《Chinese Optics Letters》 SCIE EI CAS CSCD 2017年第7期86-90,共5页
Photothermal/photoacoustic(PT/PA) spectroscopy provides useful knowledge about optical absorption, as well as the thermal and acoustical properties of a liquid sample. For microfluidic biosensing and bioanalysis whe... Photothermal/photoacoustic(PT/PA) spectroscopy provides useful knowledge about optical absorption, as well as the thermal and acoustical properties of a liquid sample. For microfluidic biosensing and bioanalysis where an extremely small volume of liquid sample is encapsulated, simultaneous PT/PA detection remains a challenge. In this work, we present a new optofluidic device based on a liquid-core optical ring resonator(LCORR) for the investigation of PT and PA effects in fluid samples. A focused 532 nm pulsed light optically heats the absorptive fluid in a capillary to locally create a transient temperature rise, as well as acoustic waves. A1550 nm CW laser light is quadrature-locked to detect the resonance spectrum shift of the LCORR and study thermal diffusion and acoustic wave propagation in the capillary. This modality provides an optofluidic investigative platform for biological/biochemical sensing and spectroscopy. 展开更多
关键词 resonator quadrature capillary simultaneous modality extremely locked biochemical Observation optically
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部