By applying a maximal element theorem on product FC-space due to author, some new equilibrium existence theorems for generalized games with fuzzy constraint correspondences are proved in FC-spaces. By using these equi...By applying a maximal element theorem on product FC-space due to author, some new equilibrium existence theorems for generalized games with fuzzy constraint correspondences are proved in FC-spaces. By using these equilibrium existence theorems, some new existence theorems of solutions for the system of generalized vector quasi-equilibrium problems are established in noncompact product FC-spaces. These results improve and generalize some recent results in literature to product FC-spaces without any convexity structure.展开更多
By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established...By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.展开更多
In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-...In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-uniform spaces without convexity structure. By using the KKM type theorem and Himmelberg type fixed point theorem proposed by the author, some new existence theorems of solutions for the systems of generalized vector quasi-variational inclusion problems are proved. As to its applications, we obtain some existence results of solutions for systems of generalized vector quasi-optimization problems.展开更多
By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established...By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.展开更多
By using Fort theorem the generic stability result for the system of generalized vector equilibrium problems is established. Further, by proving the existence and connectivity of minimal essential set the existence re...By using Fort theorem the generic stability result for the system of generalized vector equilibrium problems is established. Further, by proving the existence and connectivity of minimal essential set the existence result of essential components in the solution set is derived.展开更多
Some classes of generalized vector quasi-equilibrium problems ( in short, GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems; generalized vector...Some classes of generalized vector quasi-equilibrium problems ( in short, GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems; generalized vector variational inequality problems, quasi-equilibrium problems and quasi-variational inequality problems as special cases. First, an equilibrium existence theorem for one person games is proved in locally G-convex spaces.. As applications, some new existence theorems of solutions for the GVQEP are established in noncompact locally G-convex spaces. These results and argument methods are new and completely different from that in recent literature.展开更多
In this paper, two kinds of parametric generalized vector quasi-equilibrium problems are introduced and the relations between them are studied. The upper and lower semicontinuity of their solution sets to parameters a...In this paper, two kinds of parametric generalized vector quasi-equilibrium problems are introduced and the relations between them are studied. The upper and lower semicontinuity of their solution sets to parameters are investigated.展开更多
In this article, four new classes of systems of generalized vector quasi-equilibrium problems are introduced and studied in FC-spaces without convexity structure. The notions of Ci(x)-FC-partially diagonally quasico...In this article, four new classes of systems of generalized vector quasi-equilibrium problems are introduced and studied in FC-spaces without convexity structure. The notions of Ci(x)-FC-partially diagonally quasiconvex, Ci(x)-FC-quasiconvex, and Ci(x)-FC- quasiconvex-like for set-valued mappings are also introduced in FC-spaces. By applying these notions and a maximal element theorem, the nonemptyness and compactness of solution sets for four classes of systems of generalized vector quasi-equilibrium problems are proved in noncompact FC-spaces. As applications, some new existence theorems of solutions for mathematical programs with system of generalized vector quasi-equilibrium constraints are obtained in FC-spaces. These results improve and generalize some recent known results in literature.展开更多
A new class of locally finite continuous topological spaces (for short, locally FC-spaces) and a class of system of generalized vector quasi-equilibrium problems are introduced. By applying a generalized Himmelberg ...A new class of locally finite continuous topological spaces (for short, locally FC-spaces) and a class of system of generalized vector quasi-equilibrium problems are introduced. By applying a generalized Himmelberg type fixed point theorem for a set-valued mapping with KKM-property due to the author, a collectively fixed point and an equilibrium existence theorem of generalized game are first proved in locally FC-spaces. By applying our equilibrium existence theorem of generalized game, some new existence theorems of equilibrium points for the system of generalized vector quasi-equilibrium problems are proved in locally FC-spaces. These theorems improve, unify and generalize many known results in the literatures.展开更多
The well-known Generalized Champagne Problem on simultaneous stabilization of linear systems is solved by using complex analysis and Blonders technique. We give a complete answer to the open problem proposed by Patel ...The well-known Generalized Champagne Problem on simultaneous stabilization of linear systems is solved by using complex analysis and Blonders technique. We give a complete answer to the open problem proposed by Patel et al., which automatically includes the solution to the original Champagne Problem. Based on the recent development in automated inequality-type theorem proving, a new stabilizing controller design method is established. Our numerical examples significantly improve the relevant results in the literature.展开更多
In this paper, a system of generalized symmetric vector quasi-equilibrium problems for set-valued mappings is introduced. By using a scalarization method and a fixed-point theorem, the existence result for its solutio...In this paper, a system of generalized symmetric vector quasi-equilibrium problems for set-valued mappings is introduced. By using a scalarization method and a fixed-point theorem, the existence result for its solution is established. The main result extends the corresponding results in Fu (J. Math. Anal. Appl. 285, 708–713, 2003) and Zhang, Chen and Li (OR Transactions 10, 24–32, 2006).展开更多
Let X, Y be two finite-dimensional topological vector spaces, Z a Hausdorff topological vector space, K C X and D C Z be two nonempty sets, C be a pointed, closed, and convex cone in Y with int C ≠θ Let S : K → 2^...Let X, Y be two finite-dimensional topological vector spaces, Z a Hausdorff topological vector space, K C X and D C Z be two nonempty sets, C be a pointed, closed, and convex cone in Y with int C ≠θ Let S : K → 2^K and T : K → 2^D be two multivalued mappings, and φ : K × D × K → Y be a trifunction. In this paper, we consider the generalized vector quasi-equilibrium problem, which is formulated by finding X∈ K and y∈ T(x) such that x∈ E S(x) and φ(x,y, u) (∈/) -int C for all u ∈ S(x). We establish an existence result in which T is not supposed to have any continuity property. Our results extend and improve the corresponding results of Cubiotti, Yao and Guo.展开更多
基金This project was supported by the NSF of Sichuan Education of China(2003A081)and SZD0406
文摘By applying a maximal element theorem on product FC-space due to author, some new equilibrium existence theorems for generalized games with fuzzy constraint correspondences are proved in FC-spaces. By using these equilibrium existence theorems, some new existence theorems of solutions for the system of generalized vector quasi-equilibrium problems are established in noncompact product FC-spaces. These results improve and generalize some recent results in literature to product FC-spaces without any convexity structure.
文摘By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.
基金supported by the Natural Science Foundation of Sichuan Education Department of China(No. 07ZA092)the Sichuan Province Leading Academic Discipline Project (No. SZD0406)
文摘In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-uniform spaces without convexity structure. By using the KKM type theorem and Himmelberg type fixed point theorem proposed by the author, some new existence theorems of solutions for the systems of generalized vector quasi-variational inclusion problems are proved. As to its applications, we obtain some existence results of solutions for systems of generalized vector quasi-optimization problems.
文摘By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.
基金Supported by NSF of Chongqing and Science Foundations of Chongqing Jia1otong University
文摘By using Fort theorem the generic stability result for the system of generalized vector equilibrium problems is established. Further, by proving the existence and connectivity of minimal essential set the existence result of essential components in the solution set is derived.
文摘Some classes of generalized vector quasi-equilibrium problems ( in short, GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems; generalized vector variational inequality problems, quasi-equilibrium problems and quasi-variational inequality problems as special cases. First, an equilibrium existence theorem for one person games is proved in locally G-convex spaces.. As applications, some new existence theorems of solutions for the GVQEP are established in noncompact locally G-convex spaces. These results and argument methods are new and completely different from that in recent literature.
基金The NSF(10871226) of Chinathe NSF(ZR2009AL006) of Shandong Province
文摘In this paper, two kinds of parametric generalized vector quasi-equilibrium problems are introduced and the relations between them are studied. The upper and lower semicontinuity of their solution sets to parameters are investigated.
基金supported by the Scientific Research Fun of Sichuan Normal University (09ZDL04)the Sichuan Province Leading Academic Discipline Project (SZD0406)
文摘In this article, four new classes of systems of generalized vector quasi-equilibrium problems are introduced and studied in FC-spaces without convexity structure. The notions of Ci(x)-FC-partially diagonally quasiconvex, Ci(x)-FC-quasiconvex, and Ci(x)-FC- quasiconvex-like for set-valued mappings are also introduced in FC-spaces. By applying these notions and a maximal element theorem, the nonemptyness and compactness of solution sets for four classes of systems of generalized vector quasi-equilibrium problems are proved in noncompact FC-spaces. As applications, some new existence theorems of solutions for mathematical programs with system of generalized vector quasi-equilibrium constraints are obtained in FC-spaces. These results improve and generalize some recent known results in literature.
基金This project is supported by the NSF of Sichuan Education Department of China (2003A081 and SZD0406)
文摘A new class of locally finite continuous topological spaces (for short, locally FC-spaces) and a class of system of generalized vector quasi-equilibrium problems are introduced. By applying a generalized Himmelberg type fixed point theorem for a set-valued mapping with KKM-property due to the author, a collectively fixed point and an equilibrium existence theorem of generalized game are first proved in locally FC-spaces. By applying our equilibrium existence theorem of generalized game, some new existence theorems of equilibrium points for the system of generalized vector quasi-equilibrium problems are proved in locally FC-spaces. These theorems improve, unify and generalize many known results in the literatures.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 60572056, 60528007, 60334020, 60204006, 10471044, and 10372002)the National Key Basic Research and Development Program (Grant Nos. 2005CB321902, 2004CB318003, 2002CB312200)+1 种基金the Overseas Outstanding Young Researcher Foundation of Chinese Academy of Sciencesthe Program of National Key Laboratory of Intelligent Technology and Systems of Tsinghua University
文摘The well-known Generalized Champagne Problem on simultaneous stabilization of linear systems is solved by using complex analysis and Blonders technique. We give a complete answer to the open problem proposed by Patel et al., which automatically includes the solution to the original Champagne Problem. Based on the recent development in automated inequality-type theorem proving, a new stabilizing controller design method is established. Our numerical examples significantly improve the relevant results in the literature.
基金the National Natural Science Foundation of China (No.60574073)the Natural Science Foundation Project of Chongqing Science and Technology Commission (No.2007BB6117)
文摘In this paper, a system of generalized symmetric vector quasi-equilibrium problems for set-valued mappings is introduced. By using a scalarization method and a fixed-point theorem, the existence result for its solution is established. The main result extends the corresponding results in Fu (J. Math. Anal. Appl. 285, 708–713, 2003) and Zhang, Chen and Li (OR Transactions 10, 24–32, 2006).
基金the Applied Research Project of Sichuan Province(05JY029-009-1)
文摘Let X, Y be two finite-dimensional topological vector spaces, Z a Hausdorff topological vector space, K C X and D C Z be two nonempty sets, C be a pointed, closed, and convex cone in Y with int C ≠θ Let S : K → 2^K and T : K → 2^D be two multivalued mappings, and φ : K × D × K → Y be a trifunction. In this paper, we consider the generalized vector quasi-equilibrium problem, which is formulated by finding X∈ K and y∈ T(x) such that x∈ E S(x) and φ(x,y, u) (∈/) -int C for all u ∈ S(x). We establish an existence result in which T is not supposed to have any continuity property. Our results extend and improve the corresponding results of Cubiotti, Yao and Guo.
基金Supported by the Guizhou Province Natural Science Foundation of China([2011]2093)the Natural Scientific Research Foundation of Guizhou Provincial Education Department((2012)058)