This paper studies a simultaneous wireless information and power transfer system with multiple external eavesdroppers and internal curious users.We model the random network by Poisson cluster process in consideration ...This paper studies a simultaneous wireless information and power transfer system with multiple external eavesdroppers and internal curious users.We model the random network by Poisson cluster process in consideration of the case where eavesdroppers hide around certain targets.Focusing on the users that work in harvesting-transmitting mode with time switching receivers,we establish communication model via time division multiple access.On this basis,we propose a lightweight secure transmission scheme based on dual-thresholds for physical-layer security enhancement,which consists of two protocols applied to the downlink(DL) and uplink(UL) transmission respectively.In the DL,we design a dynamic information-power switching transmission protocol based on signal-to-noise ratio threshold,which provides an opportunistic approach to reform the fixed period allocation of information and power transfer;in the UL,an energy threshold is proposed for users to control the transmission,which is called a user-led on-off transmission protocol.Furthermore,we give a comprehensive performance analysis for the proposed scheme in terms of delay,reliability,security and secrecy throughput.Based on the analysis results,we optimize the two thresholds and the DL-UL allocationcoefficient to maximize the secrecy throughput.Simulation results show the proposed scheme can bring about a substantial secrecy gain.展开更多
Applications using simultaneous wireless information and power transfer(SWIPT)have increased significantly.Wireless communication technologies can be combined with the Internet of Things to develop many innovative app...Applications using simultaneous wireless information and power transfer(SWIPT)have increased significantly.Wireless communication technologies can be combined with the Internet of Things to develop many innovative applications using SWIPT,which is mainly based on wireless energy harvesting from electromagnetic waves used in communications.Wireless power transfer that uses magnetrons has been developed for communication technologies.Injection-locked magnetrons that can be used to facilitate high-power SWIPT for several devices are reviewed in this paper.This new technology is expected to pave the way for promoting the application of SWIPT in a wide range of fields.展开更多
Activating Wireless Power Transfer (WPT) in Radio-Frequency (RF) to provide on-demand energy supply to widely deployed Internet of Everything devices is a key to the next-generation energy self-sustainable 6G network....Activating Wireless Power Transfer (WPT) in Radio-Frequency (RF) to provide on-demand energy supply to widely deployed Internet of Everything devices is a key to the next-generation energy self-sustainable 6G network. However, Simultaneous Wireless Information and Power Transfer (SWIPT) in the same RF bands is challenging. The majority of previous studies compared SWIPT performance to Gaussian signaling with an infinite alphabet, which is impossible to implement in any realistic communication system. In contrast, we study the SWIPT system in a well-known Nakagami-m wireless fading channel using practical modulation techniques with finite alphabet. The attainable rate-energy-reliability tradeoff and the corresponding rationale are revealed for fixed modulation schemes. Furthermore, an adaptive modulation-based transceiver is provided for further expanding the attainable rate-energy-reliability region based on various SWIPT performances of different modulation schemes. The modulation switching thresholds and transmit power allocation at the SWIPT transmitter and the power splitting ratios at the SWIPT receiver are jointly optimized to maximize the attainable spectrum efficiency of wireless information transfer while satisfying the WPT requirement and the instantaneous and average BER constraints. Numerical results demonstrate the SWIPT performance of various fixed modulation schemes in different fading conditions. The advantage of the adaptive modulation-based SWIPT transceiver is validated.展开更多
Implementing self-sustainable wireless communication systems is urgent and challenging for 5G and 6G technologies.In this paper,we elaborate on a system solution using the programmable metasurface(PMS)for simultaneous...Implementing self-sustainable wireless communication systems is urgent and challenging for 5G and 6G technologies.In this paper,we elaborate on a system solution using the programmable metasurface(PMS)for simultaneous wireless information and power transfers(SWIPT),offering an optimized wireless energy management network.Both transmitting and receiving sides of the proposed solution are presented in detail.On the transmitting side,employing the wireless power transfer(WPT)technique,we present versatile power conveying strategies for near-field or far-field targets,single or multiple targets,and equal or unequal power targets.On the receiving side,utilizing the wireless energy harvesting(WEH)technique,we report our work on multi-functional rectifying metasurfaces that collect the wirelessly transmitted energy and the ambient energy.More importantly,a numerical model based on the plane-wave angular spectrum method is investigated to accurately calculate the radiation fields of PMS in the Fresnel and Fraunhofer regions.With this model,the efficiencies of WPT between the transmitter and the receiver are analyzed.Finally,future research directions are discussed,and integrated PMS for wireless information and wireless power is outlined.展开更多
Integrated data and energy transfer(IDET)is capable of simultaneously delivering on-demand data and energy to low-power Internet of Everything(Io E)devices.We propose a multi-carrier IDET transceiver relying on superp...Integrated data and energy transfer(IDET)is capable of simultaneously delivering on-demand data and energy to low-power Internet of Everything(Io E)devices.We propose a multi-carrier IDET transceiver relying on superposition waveforms consisting of multi-sinusoidal signals for wireless energy transfer(WET)and orthogonal-frequency-divisionmultiplexing(OFDM)signals for wireless data transfer(WDT).The outdated channel state information(CSI)in aging channels is employed by the transmitter to shape IDET waveforms.With the constraints of transmission power and WDT requirement,the amplitudes and phases of the IDET waveform at the transmitter and the power splitter at the receiver are jointly optimised for maximising the average directcurrent(DC)among a limited number of transmission frames with the existence of carrier-frequencyoffset(CFO).For the amplitude optimisation,the original non-convex problem can be transformed into a reversed geometric programming problem,then it can be effectively solved with existing tools.As for the phase optimisation,the artificial bee colony(ABC)algorithm is invoked in order to deal with the nonconvexity.Iteration between the amplitude optimisation and phase optimisation yields our joint design.Numerical results demonstrate the advantage of our joint design for the IDET waveform shaping with the existence of the CFO and the outdated CSI.展开更多
In order to satisfy the ever-increasing energy appetite of the massive battery-powered and batteryless communication devices,radio frequency(RF)signals have been relied upon for transferring wireless power to them.The...In order to satisfy the ever-increasing energy appetite of the massive battery-powered and batteryless communication devices,radio frequency(RF)signals have been relied upon for transferring wireless power to them.The joint coordination of wireless power transfer(WPT)and wireless information transfer(WIT)yields simultaneous wireless information and power transfer(SWIPT)as well as data and energy integrated communication network(DEIN).However,as a promising technique,few efforts are invested in the hardware implementation of DEIN.In order to make DEIN a reality,this paper focuses on hardware implementation of a DEIN.It firstly provides a brief tutorial on SWIPT,while summarising the latest hardware design of WPT transceiver and the existing commercial solutions.Then,a prototype design in DEIN with full protocol stack is elaborated,followed by its performance evaluation.展开更多
Terminal devices deployed in outdoor environments are facing a thorny problem of power supply.Data and energy integrated network(DEIN)is a promising technology to solve the problem,which simultaneously transfers data ...Terminal devices deployed in outdoor environments are facing a thorny problem of power supply.Data and energy integrated network(DEIN)is a promising technology to solve the problem,which simultaneously transfers data and energy through radio frequency signals.State-of-the-art researches mostly focus on theoretical aspects.By contrast,we provide a complete design and implementation of a fully functioning DEIN system with the support of an unmanned aerial vehicle(UAV).The UAV can be dispatched to areas of interest to remotely recharge batteryless terminals,while collecting essential information from them.Then,the UAV uploads the information to remote base stations.Our system verifies the feasibility of the DEIN in practical applications.展开更多
To solve the problem of energy transmission in the Internet of Things(IoTs),an energy transmission schedule over a Rayleigh fading channel in the energy harvesting system(EHS)with a dedicated energy source(ES)is consi...To solve the problem of energy transmission in the Internet of Things(IoTs),an energy transmission schedule over a Rayleigh fading channel in the energy harvesting system(EHS)with a dedicated energy source(ES)is considered.According to the channel state information(CSI)and the battery state,the charging duration of the battery is determined to jointly minimize the energy consumption of ES,the battery's deficit charges and overcharges during energy transmission.Then,the joint optimization problem is formulated using the weighted sum method.Using the ideas from the Q-learning algorithm,a Q-learning-based energy scheduling algorithm is proposed to solve this problem.Then,the Q-learning-based energy scheduling algorithm is compared with a constant strategy and an on-demand dynamic strategy in energy consumption,the battery's deficit charges and the battery's overcharges.The simulation results show that the proposed Q-learning-based energy scheduling algorithm can effectively improve the system stability in terms of the battery's deficit charges and overcharges.展开更多
Aiming at the energy consumption of long-distance device-to-device(D2D) devices for two-way communications in a cellular network,this paper proposes a strategy that combines two-way relay technology(TWRT) and simultan...Aiming at the energy consumption of long-distance device-to-device(D2D) devices for two-way communications in a cellular network,this paper proposes a strategy that combines two-way relay technology(TWRT) and simultaneous wireless information and power transfer(SWIPT) technology to achieve high energy efficiency(EE) communication.The scheme first establishes a fractional programming problem to maximize EE of D2D,and transforms it into a non-fractional optimization problem that can be solved easily.Then the problem is divided into three sub-problems:power control,power splitting ratios optimization,and relay selection.In order to maximize EE of the D2D pair,the Dinkelbach iterative algorithm is used to optimize the transmitted power of two D2D devices simultaneously;the one-dimensional search algorithm is proposed to optimize power splitting ratios;an improved optimal relay selection scheme based on EE is proposed to select relay.Finally,experiments are carried out on the Matlab simulation platform.The simulation results show that the proposed algorithm has faster convergence.Compared with the one-way relay transmission and fixed relay algorithms,the proposed scheme has higher EE.展开更多
From a circuit implementation perspective,this paper presents a brief overview of simultaneous wireless information and power transmission(SWIPT).By using zero-power batteryless wireless sensors,SWIPT mixes wireless p...From a circuit implementation perspective,this paper presents a brief overview of simultaneous wireless information and power transmission(SWIPT).By using zero-power batteryless wireless sensors,SWIPT mixes wireless power transmission with wireless communications to allow the truly practical implementation of the Internet of Things as well as many other applications.In this paper,technical backgrounds,problem formation,state-of-the-art solutions,circuit implementation examples,and system integrations of SWIPT are presented.展开更多
随着无线通信技术的快速发展,无线接入设备日益增多,但系统能耗也在不断增长。具备无线携能通信能力的正交频分复用(Orthogonal frequency division multiplexing,OFDM)系统可以有效提高系统能量效率。本文针对以系统能效为优化目标的...随着无线通信技术的快速发展,无线接入设备日益增多,但系统能耗也在不断增长。具备无线携能通信能力的正交频分复用(Orthogonal frequency division multiplexing,OFDM)系统可以有效提高系统能量效率。本文针对以系统能效为优化目标的资源分配问题,提出了基于椭球法的携能通信OFDM系统能效优化算法。该算法采用椭球法对拉格朗日乘子进行更新,可以有效加快算法收敛速度,提升算法性能。仿真实验结果表明,所提出基于椭球法的能效优化算法能有效解决以系统能效为优化目标的资源分配问题,与次梯度法相比,椭球法的收敛速度更快,能够显著地降低算法复杂度。展开更多
In cognitive radio (CR) relay networks,most previous work concentrates on maximizing physical layer quality of service (QoS),e.g.,spectral efficiency and achievable data rate,as relay selection criteria.However,the re...In cognitive radio (CR) relay networks,most previous work concentrates on maximizing physical layer quality of service (QoS),e.g.,spectral efficiency and achievable data rate,as relay selection criteria.However,the residual energy state of relay nodes is largely ignored,which has significant effects on the average network lifetime for those battery-limited wireless networks.In this paper,an opportunistic distributed best-relay node selection scheme is proposed for cooperative transmissions over underlay-paradigm based CR networks,and meanwhile guarantee that the primary link is provided with a minimum-rate for a certain percentage of time.The objective is to increase achievable data rate as well as prolong average network lifetime.Specifically,both the instantaneous channel state information (ICSI) and residual energy of candidate relay nodes are taken as weighted metric,and the relay node with the optimal weighted metric is selected as the best one.Simulation results are presented to demonstrate the effectiveness of the proposed scheme.展开更多
The agenda of this paper is to discuss about the significance and a detailed feasibility study of practical implementation of Smart Grid in Bangladesh. Smart grid refers to an electric power system that enhances grid ...The agenda of this paper is to discuss about the significance and a detailed feasibility study of practical implementation of Smart Grid in Bangladesh. Smart grid refers to an electric power system that enhances grid reliability and efficiency by automatically responding to system disturbances. Power crisis is a major problem for a developing country like Bangladesh. Efficient transmission and distribution of electricity with essential energy resources is a fundamental requirement to provide citizens and economies. The paper analyzes the characteristics of Smart Grid and a comparative analysis with conventional grid system. It also discusses about the efficient transmission and distribution process which will integrate power system with renewable energy and information system.展开更多
无小区大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)与非正交多址接入(Non-Orthogonal Multiple Access,NOMA)都是未来6G的使能技术。无线携能通信(Simultaneous Wireless Information and Power Transfer,SWIPT)技术在进...无小区大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)与非正交多址接入(Non-Orthogonal Multiple Access,NOMA)都是未来6G的使能技术。无线携能通信(Simultaneous Wireless Information and Power Transfer,SWIPT)技术在进行信息解码的同时收集能量,与无小区大规模MIMO-NOMA优势互补。文中基于SWIPT研究无小区大规模MIMO-NOMA系统中的能量效率问题,通过联合优化功率分配系数和SWIPT的时隙切换(Time Switching,TS)系数,提高系统的能量效率。为了最大化能量效率,采用布谷鸟算法设计功率分配系数。考虑一种特殊情况,将所有终端的TS系数设置相同,进而推导了最佳TS系数的封闭表达式。仿真结果表明,相较于几种已有方案,文中提出的优化方案可以显著提升系统的能量效率。展开更多
为了解决全双工(Full Duplex,FD)异构无线携能通信(Simultaneous Wireless Information and Power Transfer,SWIPT)网络中的传输安全问题,针对存在多个窃听者的通信场景,提出基于人工噪声(Artificial Noise,AN)辅助的FD异构SWIPT网络安...为了解决全双工(Full Duplex,FD)异构无线携能通信(Simultaneous Wireless Information and Power Transfer,SWIPT)网络中的传输安全问题,针对存在多个窃听者的通信场景,提出基于人工噪声(Artificial Noise,AN)辅助的FD异构SWIPT网络安全波束成形设计方案。该方案在满足安全发射功率阈值、最低安全速率以及收集能量等约束条件下,通过联合优化AN、信息信号波束成形矢量以及上行发射功率最大化安全能量效率(Secrecy Energy Efficiency,SEE)。针对安全能量效率优化问题的非凸性,提出一种基于Dinkelbach和连续凸近似的双层优化算法,通过半定松弛技术、泰勒级数展开、连续凸近似法将难以求解的非凸问题转化为凸问题,最后利用MATLAB软件中的凸优化工具箱CVX进行求解。仿真实验验证了波束成形设计方案能够实现安全传输,且对系统能效也有一定程度的提升。展开更多
基金supported in part by China High-Tech RD Program(863 Program) SS2015AA011306National Natural Science Foundation of China under Grants No.61379006,61401510,61501516,61521003
文摘This paper studies a simultaneous wireless information and power transfer system with multiple external eavesdroppers and internal curious users.We model the random network by Poisson cluster process in consideration of the case where eavesdroppers hide around certain targets.Focusing on the users that work in harvesting-transmitting mode with time switching receivers,we establish communication model via time division multiple access.On this basis,we propose a lightweight secure transmission scheme based on dual-thresholds for physical-layer security enhancement,which consists of two protocols applied to the downlink(DL) and uplink(UL) transmission respectively.In the DL,we design a dynamic information-power switching transmission protocol based on signal-to-noise ratio threshold,which provides an opportunistic approach to reform the fixed period allocation of information and power transfer;in the UL,an energy threshold is proposed for users to control the transmission,which is called a user-led on-off transmission protocol.Furthermore,we give a comprehensive performance analysis for the proposed scheme in terms of delay,reliability,security and secrecy throughput.Based on the analysis results,we optimize the two thresholds and the DL-UL allocationcoefficient to maximize the secrecy throughput.Simulation results show the proposed scheme can bring about a substantial secrecy gain.
基金the collaborative research program from the Microwave Energy Transmission Laboratory(METLAB)Research Insti⁃tute for Sustainable Humanosphere(RISH)Kyoto University and National Institute of Information and Communications Technology(NICT),JAPAN under Grant No.02401.
文摘Applications using simultaneous wireless information and power transfer(SWIPT)have increased significantly.Wireless communication technologies can be combined with the Internet of Things to develop many innovative applications using SWIPT,which is mainly based on wireless energy harvesting from electromagnetic waves used in communications.Wireless power transfer that uses magnetrons has been developed for communication technologies.Injection-locked magnetrons that can be used to facilitate high-power SWIPT for several devices are reviewed in this paper.This new technology is expected to pave the way for promoting the application of SWIPT in a wide range of fields.
基金the financial support of National Natural Science Foundation of China(NSFC),Grant No.61971102,61871076the Key Research and Development Program of Zhejiang Province under Grant No.2022C01093.
文摘Activating Wireless Power Transfer (WPT) in Radio-Frequency (RF) to provide on-demand energy supply to widely deployed Internet of Everything devices is a key to the next-generation energy self-sustainable 6G network. However, Simultaneous Wireless Information and Power Transfer (SWIPT) in the same RF bands is challenging. The majority of previous studies compared SWIPT performance to Gaussian signaling with an infinite alphabet, which is impossible to implement in any realistic communication system. In contrast, we study the SWIPT system in a well-known Nakagami-m wireless fading channel using practical modulation techniques with finite alphabet. The attainable rate-energy-reliability tradeoff and the corresponding rationale are revealed for fixed modulation schemes. Furthermore, an adaptive modulation-based transceiver is provided for further expanding the attainable rate-energy-reliability region based on various SWIPT performances of different modulation schemes. The modulation switching thresholds and transmit power allocation at the SWIPT transmitter and the power splitting ratios at the SWIPT receiver are jointly optimized to maximize the attainable spectrum efficiency of wireless information transfer while satisfying the WPT requirement and the instantaneous and average BER constraints. Numerical results demonstrate the SWIPT performance of various fixed modulation schemes in different fading conditions. The advantage of the adaptive modulation-based SWIPT transceiver is validated.
基金the National Key Research and Development Program of China under Grant Nos.2017YFA0700201,2017YFA0700202,2017YFA0700203,and 2021YFA1401001the 111 Project under Grant No.111⁃2⁃05,National Natural Science Foundation of China under Grant No.62001342+1 种基金Key Research and Development Program of Shaanxi under Grant No.2021TD⁃07Outstanding Youth Science Foundation of Shaanxi Province under Grant No.2019JC⁃15.
文摘Implementing self-sustainable wireless communication systems is urgent and challenging for 5G and 6G technologies.In this paper,we elaborate on a system solution using the programmable metasurface(PMS)for simultaneous wireless information and power transfers(SWIPT),offering an optimized wireless energy management network.Both transmitting and receiving sides of the proposed solution are presented in detail.On the transmitting side,employing the wireless power transfer(WPT)technique,we present versatile power conveying strategies for near-field or far-field targets,single or multiple targets,and equal or unequal power targets.On the receiving side,utilizing the wireless energy harvesting(WEH)technique,we report our work on multi-functional rectifying metasurfaces that collect the wirelessly transmitted energy and the ambient energy.More importantly,a numerical model based on the plane-wave angular spectrum method is investigated to accurately calculate the radiation fields of PMS in the Fresnel and Fraunhofer regions.With this model,the efficiencies of WPT between the transmitter and the receiver are analyzed.Finally,future research directions are discussed,and integrated PMS for wireless information and wireless power is outlined.
基金financial support of Natural Science Foundation of China(No.61971102,62132004)MOST Major Research and Development Project(No.2021YFB2900204)+1 种基金Sichuan Science and Technology Program(No.2022YFH0022)Key Research and Development Program of Zhejiang Province(No.2022C01093)。
文摘Integrated data and energy transfer(IDET)is capable of simultaneously delivering on-demand data and energy to low-power Internet of Everything(Io E)devices.We propose a multi-carrier IDET transceiver relying on superposition waveforms consisting of multi-sinusoidal signals for wireless energy transfer(WET)and orthogonal-frequency-divisionmultiplexing(OFDM)signals for wireless data transfer(WDT).The outdated channel state information(CSI)in aging channels is employed by the transmitter to shape IDET waveforms.With the constraints of transmission power and WDT requirement,the amplitudes and phases of the IDET waveform at the transmitter and the power splitter at the receiver are jointly optimised for maximising the average directcurrent(DC)among a limited number of transmission frames with the existence of carrier-frequencyoffset(CFO).For the amplitude optimisation,the original non-convex problem can be transformed into a reversed geometric programming problem,then it can be effectively solved with existing tools.As for the phase optimisation,the artificial bee colony(ABC)algorithm is invoked in order to deal with the nonconvexity.Iteration between the amplitude optimisation and phase optimisation yields our joint design.Numerical results demonstrate the advantage of our joint design for the IDET waveform shaping with the existence of the CFO and the outdated CSI.
基金financial support of National Natural Science Foundation of China(NSFC),No.U1705263 and 61971102GF Innovative Research Programthe Sichuan Science and Technology Program,No.2019YJ0194。
文摘In order to satisfy the ever-increasing energy appetite of the massive battery-powered and batteryless communication devices,radio frequency(RF)signals have been relied upon for transferring wireless power to them.The joint coordination of wireless power transfer(WPT)and wireless information transfer(WIT)yields simultaneous wireless information and power transfer(SWIPT)as well as data and energy integrated communication network(DEIN).However,as a promising technique,few efforts are invested in the hardware implementation of DEIN.In order to make DEIN a reality,this paper focuses on hardware implementation of a DEIN.It firstly provides a brief tutorial on SWIPT,while summarising the latest hardware design of WPT transceiver and the existing commercial solutions.Then,a prototype design in DEIN with full protocol stack is elaborated,followed by its performance evaluation.
基金partly funded by Natural Science Foundation of China(No.61971102 and 62132004)Sichuan Science and Technology Program(No.22QYCX0168)the Municipal Government of Quzhou(Grant No.2021D003)。
文摘Terminal devices deployed in outdoor environments are facing a thorny problem of power supply.Data and energy integrated network(DEIN)is a promising technology to solve the problem,which simultaneously transfers data and energy through radio frequency signals.State-of-the-art researches mostly focus on theoretical aspects.By contrast,we provide a complete design and implementation of a fully functioning DEIN system with the support of an unmanned aerial vehicle(UAV).The UAV can be dispatched to areas of interest to remotely recharge batteryless terminals,while collecting essential information from them.Then,the UAV uploads the information to remote base stations.Our system verifies the feasibility of the DEIN in practical applications.
基金The National Natural Science Foundation of China(No.51608115).
文摘To solve the problem of energy transmission in the Internet of Things(IoTs),an energy transmission schedule over a Rayleigh fading channel in the energy harvesting system(EHS)with a dedicated energy source(ES)is considered.According to the channel state information(CSI)and the battery state,the charging duration of the battery is determined to jointly minimize the energy consumption of ES,the battery's deficit charges and overcharges during energy transmission.Then,the joint optimization problem is formulated using the weighted sum method.Using the ideas from the Q-learning algorithm,a Q-learning-based energy scheduling algorithm is proposed to solve this problem.Then,the Q-learning-based energy scheduling algorithm is compared with a constant strategy and an on-demand dynamic strategy in energy consumption,the battery's deficit charges and the battery's overcharges.The simulation results show that the proposed Q-learning-based energy scheduling algorithm can effectively improve the system stability in terms of the battery's deficit charges and overcharges.
基金Supported by the National Natural Science Foundation of China (No.61561031)。
文摘Aiming at the energy consumption of long-distance device-to-device(D2D) devices for two-way communications in a cellular network,this paper proposes a strategy that combines two-way relay technology(TWRT) and simultaneous wireless information and power transfer(SWIPT) technology to achieve high energy efficiency(EE) communication.The scheme first establishes a fractional programming problem to maximize EE of D2D,and transforms it into a non-fractional optimization problem that can be solved easily.Then the problem is divided into three sub-problems:power control,power splitting ratios optimization,and relay selection.In order to maximize EE of the D2D pair,the Dinkelbach iterative algorithm is used to optimize the transmitted power of two D2D devices simultaneously;the one-dimensional search algorithm is proposed to optimize power splitting ratios;an improved optimal relay selection scheme based on EE is proposed to select relay.Finally,experiments are carried out on the Matlab simulation platform.The simulation results show that the proposed algorithm has faster convergence.Compared with the one-way relay transmission and fixed relay algorithms,the proposed scheme has higher EE.
基金FCT/MCTES through national funds and EU funds under the project UIDB/50008/2020⁃UIDP/50008/2020Lisboa 2020 Programme,Centro 2020 programme,Portugal 2020,Euro⁃pean Union,through the European Social Fund who sup⁃ported LISBOA-05-3559-FSE-000007 and CENTRO-04-3559-FSE-000094 operations as well as to Fundação para a Ciência e Tecnologia(FCT)and Agência Nacional de Inovação(ANI).
文摘From a circuit implementation perspective,this paper presents a brief overview of simultaneous wireless information and power transmission(SWIPT).By using zero-power batteryless wireless sensors,SWIPT mixes wireless power transmission with wireless communications to allow the truly practical implementation of the Internet of Things as well as many other applications.In this paper,technical backgrounds,problem formation,state-of-the-art solutions,circuit implementation examples,and system integrations of SWIPT are presented.
文摘随着无线通信技术的快速发展,无线接入设备日益增多,但系统能耗也在不断增长。具备无线携能通信能力的正交频分复用(Orthogonal frequency division multiplexing,OFDM)系统可以有效提高系统能量效率。本文针对以系统能效为优化目标的资源分配问题,提出了基于椭球法的携能通信OFDM系统能效优化算法。该算法采用椭球法对拉格朗日乘子进行更新,可以有效加快算法收敛速度,提升算法性能。仿真实验结果表明,所提出基于椭球法的能效优化算法能有效解决以系统能效为优化目标的资源分配问题,与次梯度法相比,椭球法的收敛速度更快,能够显著地降低算法复杂度。
基金Sponsored by the National Major Science&Technology Project(Grand No.2009ZX03002-014)the National Nature Science Foundation(Grant No.60832009)+1 种基金the Beijing Municipal Natural Science Foundation(Grand No.4102044)the National Natural Science Foundation for Distinguished Young Scholar(Grand No.61001115)
文摘In cognitive radio (CR) relay networks,most previous work concentrates on maximizing physical layer quality of service (QoS),e.g.,spectral efficiency and achievable data rate,as relay selection criteria.However,the residual energy state of relay nodes is largely ignored,which has significant effects on the average network lifetime for those battery-limited wireless networks.In this paper,an opportunistic distributed best-relay node selection scheme is proposed for cooperative transmissions over underlay-paradigm based CR networks,and meanwhile guarantee that the primary link is provided with a minimum-rate for a certain percentage of time.The objective is to increase achievable data rate as well as prolong average network lifetime.Specifically,both the instantaneous channel state information (ICSI) and residual energy of candidate relay nodes are taken as weighted metric,and the relay node with the optimal weighted metric is selected as the best one.Simulation results are presented to demonstrate the effectiveness of the proposed scheme.
文摘The agenda of this paper is to discuss about the significance and a detailed feasibility study of practical implementation of Smart Grid in Bangladesh. Smart grid refers to an electric power system that enhances grid reliability and efficiency by automatically responding to system disturbances. Power crisis is a major problem for a developing country like Bangladesh. Efficient transmission and distribution of electricity with essential energy resources is a fundamental requirement to provide citizens and economies. The paper analyzes the characteristics of Smart Grid and a comparative analysis with conventional grid system. It also discusses about the efficient transmission and distribution process which will integrate power system with renewable energy and information system.
文摘无小区大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)与非正交多址接入(Non-Orthogonal Multiple Access,NOMA)都是未来6G的使能技术。无线携能通信(Simultaneous Wireless Information and Power Transfer,SWIPT)技术在进行信息解码的同时收集能量,与无小区大规模MIMO-NOMA优势互补。文中基于SWIPT研究无小区大规模MIMO-NOMA系统中的能量效率问题,通过联合优化功率分配系数和SWIPT的时隙切换(Time Switching,TS)系数,提高系统的能量效率。为了最大化能量效率,采用布谷鸟算法设计功率分配系数。考虑一种特殊情况,将所有终端的TS系数设置相同,进而推导了最佳TS系数的封闭表达式。仿真结果表明,相较于几种已有方案,文中提出的优化方案可以显著提升系统的能量效率。
文摘为了解决全双工(Full Duplex,FD)异构无线携能通信(Simultaneous Wireless Information and Power Transfer,SWIPT)网络中的传输安全问题,针对存在多个窃听者的通信场景,提出基于人工噪声(Artificial Noise,AN)辅助的FD异构SWIPT网络安全波束成形设计方案。该方案在满足安全发射功率阈值、最低安全速率以及收集能量等约束条件下,通过联合优化AN、信息信号波束成形矢量以及上行发射功率最大化安全能量效率(Secrecy Energy Efficiency,SEE)。针对安全能量效率优化问题的非凸性,提出一种基于Dinkelbach和连续凸近似的双层优化算法,通过半定松弛技术、泰勒级数展开、连续凸近似法将难以求解的非凸问题转化为凸问题,最后利用MATLAB软件中的凸优化工具箱CVX进行求解。仿真实验验证了波束成形设计方案能够实现安全传输,且对系统能效也有一定程度的提升。