期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种新型径向基函数神经网络的非线性系统逼近 被引量:1
1
作者 冯维军 郭建胜 《现代电子技术》 2003年第15期38-41,共4页
讨论了一种新的、正弦型径向基函数 (SRBF)神经网络 ,并用来逼近 n维连续函数。该 SRBF所采用的 n维正弦型的基函数是光滑的 ,并且是致密的。该 SRBF网络的权因子是输入的低阶多项式函数。本文给出的一种简单计算程序 ,显著地降低了网... 讨论了一种新的、正弦型径向基函数 (SRBF)神经网络 ,并用来逼近 n维连续函数。该 SRBF所采用的 n维正弦型的基函数是光滑的 ,并且是致密的。该 SRBF网络的权因子是输入的低阶多项式函数。本文给出的一种简单计算程序 ,显著地降低了网络训练和计算时间。并且由于 SRBF的基函数可以非均匀的量化格点为中心 ,因而降低了网络所需存储的样本数 ,网络的输出及其一阶导数都是连续的。对于非线性系统 ,该 SRBF网络在系统定义域内的逼近是精确的 ,并且在存储参数的个数上是最优的。通过实例仿真 ,证明该方法步骤简单 ,训练速度快 。 展开更多
关键词 正弦型径向基函数 srbf 神经网络 函数逼近 非线性系统
下载PDF
Towards Improving the Intrusion Detection through ELM (Extreme Learning Machine)
2
作者 Iftikhar Ahmad Rayan Atteah Alsemmeari 《Computers, Materials & Continua》 SCIE EI 2020年第11期1097-1111,共15页
An IDS(intrusion detection system)provides a foremost front line mechanism to guard networks,systems,data,and information.That’s why intrusion detection has grown as an active study area and provides significant cont... An IDS(intrusion detection system)provides a foremost front line mechanism to guard networks,systems,data,and information.That’s why intrusion detection has grown as an active study area and provides significant contribution to cyber-security techniques.Multiple techniques have been in use but major concern in their implementation is variation in their detection performance.The performance of IDS lies in the accurate detection of attacks,and this accuracy can be raised by improving the recognition rate and significant reduction in the false alarms rate.To overcome this problem many researchers have used different machine learning techniques.These techniques have limitations and do not efficiently perform on huge and complex data about systems and networks.This work focused on ELM(Extreme Learning Machine)technique due to its good capabilities in classification problems and dealing with huge data.The ELM has different activation functions,but the problem is to find out which function is more suitable and performs well in IDS.This work investigates this problem.Here,Well-known activation functions like:sine,sigmoid and radial basis are explored,investigated and applied to measure their performance on the GA(Genetic Algorithm)features subset and with full features set.The NSL-KDD dataset is used as a benchmark.The empirical results are analyzed,addressed and compared among different activation functions of the ELM.The results show that the radial basis and sine functions perform better on GA feature set than the full feature set while the performance of the sigmoid function is almost equal on both features sets.So,the proposal of GA based feature selection reduced 21 features out of 41 that brought up to 98%accuracy and enhanced overall efficiency of extreme learning machine in intrusion detection. 展开更多
关键词 ACCURACY extreme learning machine sine function sigmoid function radial basis genetic algorithm NSL-KDD
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部