Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate b...Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate block for all months.To address this limitation,this study developed a mixed D-vine copula-based conditional quantile model that can capture temporal correlations.This model can generate streamflow by selecting different historical streamflow variables as the conditions for different months and by exploiting the conditional quantile functions of streamflows in different months with mixed D-vine copulas.The up-to-down sequential method,which couples the maximum weight approach with the Akaike information criteria and the maximum likelihood approach,was used to determine the structures of multivariate Dvine copulas.The developed model was used in a case study to synthesize the monthly streamflow at the Tangnaihai hydrological station,the inflow control station of the Longyangxia Reservoir in the Yellow River Basin.The results showed that the developed model outperformed the commonly used bivariate copula model in terms of the performance in simulating the seasonality and interannual variability of streamflow.This model provides useful information for water-related natural hazard risk assessment and integrated water resources management and utilization.展开更多
In this paper, three smoothed empirical log-likelihood ratio functions for the parameters of nonlinear models with missing response are suggested. Under some regular conditions, the corresponding Wilks phenomena are o...In this paper, three smoothed empirical log-likelihood ratio functions for the parameters of nonlinear models with missing response are suggested. Under some regular conditions, the corresponding Wilks phenomena are obtained and the confidence regions for the parameter can be constructed easily.展开更多
Because the U.S.is a major player in the international oil market,it is interesting to study whether aggregate and state-level economic conditions can predict the subse-quent realized volatility of oil price returns.T...Because the U.S.is a major player in the international oil market,it is interesting to study whether aggregate and state-level economic conditions can predict the subse-quent realized volatility of oil price returns.To address this research question,we frame our analysis in terms of variants of the popular heterogeneous autoregressive realized volatility(HAR-RV)model.To estimate the models,we use quantile-regression and quantile machine learning(Lasso)estimators.Our estimation results highlights the dif-ferential effects of economic conditions on the quantiles of the conditional distribution of realized volatility.Using weekly data for the period April 1987 to December 2021,we document evidence of predictability at a biweekly and monthly horizon.展开更多
In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illus...In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illustrate that the finite sample performances of proposed method perform better than the least squares based method with regard to the non-causal selection rate (NSR) and the median of model error (MME) when the error distribution is heavy-tail. Finally, we apply the proposed methodology to analyze the ragweed pollen level dataset.展开更多
The composite quantile regression should provide estimation efficiency gain over a single quantile regression. In this paper, we extend composite quantile regression to nonparametric model with random censored data. T...The composite quantile regression should provide estimation efficiency gain over a single quantile regression. In this paper, we extend composite quantile regression to nonparametric model with random censored data. The asymptotic normality of the proposed estimator is established. The proposed methods are applied to the lung cancer data. Extensive simulations are reported, showing that the proposed method works well in practical settings.展开更多
In the past two decades,model averaging,as a way to solve model uncertainty,has attracted more and more attention.In this paper,the authors propose a jackknife model averaging(JMA) method for the quantile single-index...In the past two decades,model averaging,as a way to solve model uncertainty,has attracted more and more attention.In this paper,the authors propose a jackknife model averaging(JMA) method for the quantile single-index coefficient model,which is widely used in statistics.Under model misspecification,the model averaging estimator is proved to be asymptotically optimal in terms of minimizing out-of-sample quantile loss.Simulation experiments are conducted to compare the JMA method with several model selections and model averaging methods,and the results show that the proposed method has a satisfactory performance.The method is also applied to a real dataset.展开更多
In this paper,the authors propose a frequentist model averaging method for composite quantile regression with diverging number of parameters.Different from the traditional model averaging for quantile regression which...In this paper,the authors propose a frequentist model averaging method for composite quantile regression with diverging number of parameters.Different from the traditional model averaging for quantile regression which considers only a single quantile,the proposed model averaging estimator is based on multiple quantiles.The well-known delete-one cross-validation or jackknife approach is applied to estimate the model weights.The resultant jackknife model averaging estimator is shown to be asymptotically optimal in terms of minimizing the out-of-sample composite final prediction error.Simulation studies are conducted to demonstrate the finite sample performance of the new model averaging estimator.The proposed method is also applied to the analysis of the stock returns data and the wage data.展开更多
This paper studies how the price movements of pork,chicken and egg respond to those of related cost factors in short terms in Chinese market.We employ a linear quantile approach not only to explore potential data hete...This paper studies how the price movements of pork,chicken and egg respond to those of related cost factors in short terms in Chinese market.We employ a linear quantile approach not only to explore potential data heteroscedasticity but also to generate confidence bands for the purpose of price stability study.We then evaluate our models by comparing the prediction intervals generated from the quantile regression models with in-sample and out-of-sample forecasts.Using monthly data from January 2000 to October 2010,we observed these findings:(i) the price changes of cost factors asymmetrically and unequally influence those of the livestock across different quantiles;(ii) the performance of our models is robust and consistent for both in-sample and out-of-sample forecasts;(iii) the confidence intervals generated from 0.05th and 0.95th quantile regression models are good methods to forecast livestock price fluctuation.展开更多
This paper considers quantile regression analysis based on semi-competing risks data in which a non-terminal event may be dependently censored by a terminal event. The major interest is the covariate effects on the qu...This paper considers quantile regression analysis based on semi-competing risks data in which a non-terminal event may be dependently censored by a terminal event. The major interest is the covariate effects on the quantile of the non-terminal event time. Dependent censoring is handled by assuming that the joint distribution of the two event times follows a parametric copula model with unspecified marginal distributions. The technique of inverse probability weighting (IPW) is adopted to adjust for the selection bias. Large-sample properties of the proposed estimator are derived and a model diagnostic procedure is developed to check the adequacy of the model assumption. Simulation results show that the proposed estimator performs well. For illustrative purposes, our method is applied to analyze the bone marrow transplant data in [1].展开更多
Scour has been widely accepted as a key reason for bridge failures.Bridges are susceptible and sensitive to the scour phenomenon,which describes the loss of riverbed sediments around the bridge supports because of flo...Scour has been widely accepted as a key reason for bridge failures.Bridges are susceptible and sensitive to the scour phenomenon,which describes the loss of riverbed sediments around the bridge supports because of flow.The carrying capacity of a deep-water foundation is influenced by the formation of a scour hole,which means that a severe scour can lead to a bridge failure without warning.Most of the current scour predictions are based on deterministic models,while other loads at bridges are usually provided as probabilistic values.To integrate scour factors with other loads in bridge design and research,a quantile regression model was utilized to estimate scour depth.Field data and experimental data from previous studies were collected to build the model.Moreover,scour estimations using the HEC-18 equation and the proposed method were compared.By using the“CCC(Calculate,Confirm,and Check)”procedure,the probabilistic concept could be used to calculate various scour depths with the targeted likelihood according to a specified chance of bridge failure.The study shows that with a sufficiently large and continuously updated database,the proposed model could present reasonable results and provide guidance for scour mitigation.展开更多
The sparse phase retrieval aims to recover the sparse signal from quadratic measurements. However, the measurements are often affected by outliers and asymmetric distribution noise. This paper introduces a novel metho...The sparse phase retrieval aims to recover the sparse signal from quadratic measurements. However, the measurements are often affected by outliers and asymmetric distribution noise. This paper introduces a novel method that combines the quantile regression and the L<sub>1/2</sub>-regularizer. It is a non-convex, non-smooth, non-Lipschitz optimization problem. We propose an efficient algorithm based on the Alternating Direction Methods of Multiplier (ADMM) to solve the corresponding optimization problem. Numerous numerical experiments show that this method can recover sparse signals with fewer measurements and is robust to dense bounded noise and Laplace noise.展开更多
随着“双碳”目标的推进,清洁能源所占比重大幅度增加,分布式光伏发电在我国农村地区快速发展,但其随机性、间歇性的特点给新能源消纳和电网稳定带来很大的挑战。光伏发电预测可以在一定程度上改善新能源消纳问题,减少光伏发电的不稳定...随着“双碳”目标的推进,清洁能源所占比重大幅度增加,分布式光伏发电在我国农村地区快速发展,但其随机性、间歇性的特点给新能源消纳和电网稳定带来很大的挑战。光伏发电预测可以在一定程度上改善新能源消纳问题,减少光伏发电的不稳定性对电网的冲击。因此,为提高光伏发电功率预测精度,提出一种基于改进向量加权平均算法优化CNN-QRGRU网络的光伏发电概率预测方法。首先采用ReliefF算法对特征变量进行选择,在此基础上利用高斯混合模型(Gaussian mixture model,GMM)聚类方法将天气分为晴天、晴转多云和阴雨天3种类型,将处理好的数据输入到CNN-GRU模型中,并利用向量加权平均(weighted mean of vectors algorithm,INFO)优化算法对模型超参数进行调参,将分位数回归模型(quantile regression,QR)与INFO-CNN-GRU模型相结合得到光伏功率条件分布,结合核密度估计法从条件分布中获得概率密度函数,完成概率预测。以实际光伏电站数据作为基础,将提出的INFO优化算法与其他几种传统的优化算法进行对比,结果表明INFO的优化效果更好,在此基础上进行概率预测,得到的概率预测结果相较于点预测能提供更多有效信息,更具有应用价值。展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52109010)the Postdoctoral Science Foundation of China(Grant No.2021M701047)the China National Postdoctoral Program for Innovative Talents(Grant No.BX20200113).
文摘Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate block for all months.To address this limitation,this study developed a mixed D-vine copula-based conditional quantile model that can capture temporal correlations.This model can generate streamflow by selecting different historical streamflow variables as the conditions for different months and by exploiting the conditional quantile functions of streamflows in different months with mixed D-vine copulas.The up-to-down sequential method,which couples the maximum weight approach with the Akaike information criteria and the maximum likelihood approach,was used to determine the structures of multivariate Dvine copulas.The developed model was used in a case study to synthesize the monthly streamflow at the Tangnaihai hydrological station,the inflow control station of the Longyangxia Reservoir in the Yellow River Basin.The results showed that the developed model outperformed the commonly used bivariate copula model in terms of the performance in simulating the seasonality and interannual variability of streamflow.This model provides useful information for water-related natural hazard risk assessment and integrated water resources management and utilization.
文摘In this paper, three smoothed empirical log-likelihood ratio functions for the parameters of nonlinear models with missing response are suggested. Under some regular conditions, the corresponding Wilks phenomena are obtained and the confidence regions for the parameter can be constructed easily.
文摘Because the U.S.is a major player in the international oil market,it is interesting to study whether aggregate and state-level economic conditions can predict the subse-quent realized volatility of oil price returns.To address this research question,we frame our analysis in terms of variants of the popular heterogeneous autoregressive realized volatility(HAR-RV)model.To estimate the models,we use quantile-regression and quantile machine learning(Lasso)estimators.Our estimation results highlights the dif-ferential effects of economic conditions on the quantiles of the conditional distribution of realized volatility.Using weekly data for the period April 1987 to December 2021,we document evidence of predictability at a biweekly and monthly horizon.
文摘In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illustrate that the finite sample performances of proposed method perform better than the least squares based method with regard to the non-causal selection rate (NSR) and the median of model error (MME) when the error distribution is heavy-tail. Finally, we apply the proposed methodology to analyze the ragweed pollen level dataset.
文摘The composite quantile regression should provide estimation efficiency gain over a single quantile regression. In this paper, we extend composite quantile regression to nonparametric model with random censored data. The asymptotic normality of the proposed estimator is established. The proposed methods are applied to the lung cancer data. Extensive simulations are reported, showing that the proposed method works well in practical settings.
基金supported by the National Natural Science Foundation of China under Grant Nos.U23A2064 and 12031005。
文摘In the past two decades,model averaging,as a way to solve model uncertainty,has attracted more and more attention.In this paper,the authors propose a jackknife model averaging(JMA) method for the quantile single-index coefficient model,which is widely used in statistics.Under model misspecification,the model averaging estimator is proved to be asymptotically optimal in terms of minimizing out-of-sample quantile loss.Simulation experiments are conducted to compare the JMA method with several model selections and model averaging methods,and the results show that the proposed method has a satisfactory performance.The method is also applied to a real dataset.
基金supported by the National Natural Science Foundation of China under Grant Nos.11971323 and 12031016。
文摘In this paper,the authors propose a frequentist model averaging method for composite quantile regression with diverging number of parameters.Different from the traditional model averaging for quantile regression which considers only a single quantile,the proposed model averaging estimator is based on multiple quantiles.The well-known delete-one cross-validation or jackknife approach is applied to estimate the model weights.The resultant jackknife model averaging estimator is shown to be asymptotically optimal in terms of minimizing the out-of-sample composite final prediction error.Simulation studies are conducted to demonstrate the finite sample performance of the new model averaging estimator.The proposed method is also applied to the analysis of the stock returns data and the wage data.
基金supported by the Key Project of National Key Technology R&D Program of China(2009BADA9B01)
文摘This paper studies how the price movements of pork,chicken and egg respond to those of related cost factors in short terms in Chinese market.We employ a linear quantile approach not only to explore potential data heteroscedasticity but also to generate confidence bands for the purpose of price stability study.We then evaluate our models by comparing the prediction intervals generated from the quantile regression models with in-sample and out-of-sample forecasts.Using monthly data from January 2000 to October 2010,we observed these findings:(i) the price changes of cost factors asymmetrically and unequally influence those of the livestock across different quantiles;(ii) the performance of our models is robust and consistent for both in-sample and out-of-sample forecasts;(iii) the confidence intervals generated from 0.05th and 0.95th quantile regression models are good methods to forecast livestock price fluctuation.
文摘This paper considers quantile regression analysis based on semi-competing risks data in which a non-terminal event may be dependently censored by a terminal event. The major interest is the covariate effects on the quantile of the non-terminal event time. Dependent censoring is handled by assuming that the joint distribution of the two event times follows a parametric copula model with unspecified marginal distributions. The technique of inverse probability weighting (IPW) is adopted to adjust for the selection bias. Large-sample properties of the proposed estimator are derived and a model diagnostic procedure is developed to check the adequacy of the model assumption. Simulation results show that the proposed estimator performs well. For illustrative purposes, our method is applied to analyze the bone marrow transplant data in [1].
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.51908421 and 41172246).
文摘Scour has been widely accepted as a key reason for bridge failures.Bridges are susceptible and sensitive to the scour phenomenon,which describes the loss of riverbed sediments around the bridge supports because of flow.The carrying capacity of a deep-water foundation is influenced by the formation of a scour hole,which means that a severe scour can lead to a bridge failure without warning.Most of the current scour predictions are based on deterministic models,while other loads at bridges are usually provided as probabilistic values.To integrate scour factors with other loads in bridge design and research,a quantile regression model was utilized to estimate scour depth.Field data and experimental data from previous studies were collected to build the model.Moreover,scour estimations using the HEC-18 equation and the proposed method were compared.By using the“CCC(Calculate,Confirm,and Check)”procedure,the probabilistic concept could be used to calculate various scour depths with the targeted likelihood according to a specified chance of bridge failure.The study shows that with a sufficiently large and continuously updated database,the proposed model could present reasonable results and provide guidance for scour mitigation.
文摘The sparse phase retrieval aims to recover the sparse signal from quadratic measurements. However, the measurements are often affected by outliers and asymmetric distribution noise. This paper introduces a novel method that combines the quantile regression and the L<sub>1/2</sub>-regularizer. It is a non-convex, non-smooth, non-Lipschitz optimization problem. We propose an efficient algorithm based on the Alternating Direction Methods of Multiplier (ADMM) to solve the corresponding optimization problem. Numerous numerical experiments show that this method can recover sparse signals with fewer measurements and is robust to dense bounded noise and Laplace noise.
文摘随着“双碳”目标的推进,清洁能源所占比重大幅度增加,分布式光伏发电在我国农村地区快速发展,但其随机性、间歇性的特点给新能源消纳和电网稳定带来很大的挑战。光伏发电预测可以在一定程度上改善新能源消纳问题,减少光伏发电的不稳定性对电网的冲击。因此,为提高光伏发电功率预测精度,提出一种基于改进向量加权平均算法优化CNN-QRGRU网络的光伏发电概率预测方法。首先采用ReliefF算法对特征变量进行选择,在此基础上利用高斯混合模型(Gaussian mixture model,GMM)聚类方法将天气分为晴天、晴转多云和阴雨天3种类型,将处理好的数据输入到CNN-GRU模型中,并利用向量加权平均(weighted mean of vectors algorithm,INFO)优化算法对模型超参数进行调参,将分位数回归模型(quantile regression,QR)与INFO-CNN-GRU模型相结合得到光伏功率条件分布,结合核密度估计法从条件分布中获得概率密度函数,完成概率预测。以实际光伏电站数据作为基础,将提出的INFO优化算法与其他几种传统的优化算法进行对比,结果表明INFO的优化效果更好,在此基础上进行概率预测,得到的概率预测结果相较于点预测能提供更多有效信息,更具有应用价值。