期刊文献+
共找到612篇文章
< 1 2 31 >
每页显示 20 50 100
Mixed D-vine copula-based conditional quantile model for stochastic monthly streamflow simulation
1
作者 Wen-zhuo Wang Zeng-chuan Dong +3 位作者 Tian-yan Zhang Li Ren Lian-qing Xue Teng Wu 《Water Science and Engineering》 EI CAS CSCD 2024年第1期13-20,共8页
Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate b... Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate block for all months.To address this limitation,this study developed a mixed D-vine copula-based conditional quantile model that can capture temporal correlations.This model can generate streamflow by selecting different historical streamflow variables as the conditions for different months and by exploiting the conditional quantile functions of streamflows in different months with mixed D-vine copulas.The up-to-down sequential method,which couples the maximum weight approach with the Akaike information criteria and the maximum likelihood approach,was used to determine the structures of multivariate Dvine copulas.The developed model was used in a case study to synthesize the monthly streamflow at the Tangnaihai hydrological station,the inflow control station of the Longyangxia Reservoir in the Yellow River Basin.The results showed that the developed model outperformed the commonly used bivariate copula model in terms of the performance in simulating the seasonality and interannual variability of streamflow.This model provides useful information for water-related natural hazard risk assessment and integrated water resources management and utilization. 展开更多
关键词 Stochastic monthly streamflow simulation Mixed D-vine copula Conditional quantile model Up-to-down sequential method Tangnaihai hydrological station
下载PDF
Smoothed Empirical Likelihood Inference for Nonlinear Quantile Regression Models with Missing Response
2
作者 Honghua Dong Xiuli Wang 《Open Journal of Applied Sciences》 2023年第6期921-933,共13页
In this paper, three smoothed empirical log-likelihood ratio functions for the parameters of nonlinear models with missing response are suggested. Under some regular conditions, the corresponding Wilks phenomena are o... In this paper, three smoothed empirical log-likelihood ratio functions for the parameters of nonlinear models with missing response are suggested. Under some regular conditions, the corresponding Wilks phenomena are obtained and the confidence regions for the parameter can be constructed easily. 展开更多
关键词 Nonlinear model quantile Regression Smoothed Empirical Likelihood Missing at Random
下载PDF
Do U.S.economic conditions at the state level predict the realized volatility of oil‑price returns?A quantile machine‑learning approach
3
作者 Rangan Gupta Christian Pierdzioch 《Financial Innovation》 2023年第1期645-666,共22页
Because the U.S.is a major player in the international oil market,it is interesting to study whether aggregate and state-level economic conditions can predict the subse-quent realized volatility of oil price returns.T... Because the U.S.is a major player in the international oil market,it is interesting to study whether aggregate and state-level economic conditions can predict the subse-quent realized volatility of oil price returns.To address this research question,we frame our analysis in terms of variants of the popular heterogeneous autoregressive realized volatility(HAR-RV)model.To estimate the models,we use quantile-regression and quantile machine learning(Lasso)estimators.Our estimation results highlights the dif-ferential effects of economic conditions on the quantiles of the conditional distribution of realized volatility.Using weekly data for the period April 1987 to December 2021,we document evidence of predictability at a biweekly and monthly horizon. 展开更多
关键词 Oil price Realized volatility Economic conditions indexes quantile Lasso Prediction models
下载PDF
Double-Penalized Quantile Regression in Partially Linear Models 被引量:1
4
作者 Yunlu Jiang 《Open Journal of Statistics》 2015年第2期158-164,共7页
In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illus... In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illustrate that the finite sample performances of proposed method perform better than the least squares based method with regard to the non-causal selection rate (NSR) and the median of model error (MME) when the error distribution is heavy-tail. Finally, we apply the proposed methodology to analyze the ragweed pollen level dataset. 展开更多
关键词 quantile Regression PARTIALLY LINEAR model Heavy-Tailed DISTRIBUTION
下载PDF
Composite Quantile Regression for Nonparametric Model with Random Censored Data 被引量:1
5
作者 Rong Jiang Weimin Qian 《Open Journal of Statistics》 2013年第2期65-73,共9页
The composite quantile regression should provide estimation efficiency gain over a single quantile regression. In this paper, we extend composite quantile regression to nonparametric model with random censored data. T... The composite quantile regression should provide estimation efficiency gain over a single quantile regression. In this paper, we extend composite quantile regression to nonparametric model with random censored data. The asymptotic normality of the proposed estimator is established. The proposed methods are applied to the lung cancer data. Extensive simulations are reported, showing that the proposed method works well in practical settings. 展开更多
关键词 Kaplan-Meier ESTIMATOR Censored DATA COMPOSITE quantile Regression KERNEL ESTIMATOR NONPARAMETRIC model
下载PDF
Jackknife Model Averaging for Quantile Single-Index Coefficient Model
6
作者 SUN Xianwen ZHANG Lixin 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2024年第4期1685-1713,共29页
In the past two decades,model averaging,as a way to solve model uncertainty,has attracted more and more attention.In this paper,the authors propose a jackknife model averaging(JMA) method for the quantile single-index... In the past two decades,model averaging,as a way to solve model uncertainty,has attracted more and more attention.In this paper,the authors propose a jackknife model averaging(JMA) method for the quantile single-index coefficient model,which is widely used in statistics.Under model misspecification,the model averaging estimator is proved to be asymptotically optimal in terms of minimizing out-of-sample quantile loss.Simulation experiments are conducted to compare the JMA method with several model selections and model averaging methods,and the results show that the proposed method has a satisfactory performance.The method is also applied to a real dataset. 展开更多
关键词 Final prediction error JMA criterion model averaging quantile loss single-index coefficient model
原文传递
Jackknife Model Averaging for Composite Quantile Regression
7
作者 YOU Kang WANG Miaomiao ZOU Guohua 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2024年第4期1604-1637,共34页
In this paper,the authors propose a frequentist model averaging method for composite quantile regression with diverging number of parameters.Different from the traditional model averaging for quantile regression which... In this paper,the authors propose a frequentist model averaging method for composite quantile regression with diverging number of parameters.Different from the traditional model averaging for quantile regression which considers only a single quantile,the proposed model averaging estimator is based on multiple quantiles.The well-known delete-one cross-validation or jackknife approach is applied to estimate the model weights.The resultant jackknife model averaging estimator is shown to be asymptotically optimal in terms of minimizing the out-of-sample composite final prediction error.Simulation studies are conducted to demonstrate the finite sample performance of the new model averaging estimator.The proposed method is also applied to the analysis of the stock returns data and the wage data. 展开更多
关键词 Asymptotic optimality composite quantile regression cross-validation model averaging
原文传递
Using Quantile Regression Approach to Analyze Price Movements of Agricultural Products in China 被引量:7
8
作者 LI Gan-qiong XU Shi-wei +2 位作者 LI Zhe-min SUN Yi-guo DONG Xiao-xia 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第4期674-683,共10页
This paper studies how the price movements of pork,chicken and egg respond to those of related cost factors in short terms in Chinese market.We employ a linear quantile approach not only to explore potential data hete... This paper studies how the price movements of pork,chicken and egg respond to those of related cost factors in short terms in Chinese market.We employ a linear quantile approach not only to explore potential data heteroscedasticity but also to generate confidence bands for the purpose of price stability study.We then evaluate our models by comparing the prediction intervals generated from the quantile regression models with in-sample and out-of-sample forecasts.Using monthly data from January 2000 to October 2010,we observed these findings:(i) the price changes of cost factors asymmetrically and unequally influence those of the livestock across different quantiles;(ii) the performance of our models is robust and consistent for both in-sample and out-of-sample forecasts;(iii) the confidence intervals generated from 0.05th and 0.95th quantile regression models are good methods to forecast livestock price fluctuation. 展开更多
关键词 cost factors agricultural products forecasting price movements quantile regression model
下载PDF
Quantile Regression Based on Semi-Competing Risks Data
9
作者 Jin-Jian Hsieh A. Adam Ding +1 位作者 Weijing Wang Yu-Lin Chi 《Open Journal of Statistics》 2013年第1期12-26,共15页
This paper considers quantile regression analysis based on semi-competing risks data in which a non-terminal event may be dependently censored by a terminal event. The major interest is the covariate effects on the qu... This paper considers quantile regression analysis based on semi-competing risks data in which a non-terminal event may be dependently censored by a terminal event. The major interest is the covariate effects on the quantile of the non-terminal event time. Dependent censoring is handled by assuming that the joint distribution of the two event times follows a parametric copula model with unspecified marginal distributions. The technique of inverse probability weighting (IPW) is adopted to adjust for the selection bias. Large-sample properties of the proposed estimator are derived and a model diagnostic procedure is developed to check the adequacy of the model assumption. Simulation results show that the proposed estimator performs well. For illustrative purposes, our method is applied to analyze the bone marrow transplant data in [1]. 展开更多
关键词 COPULA model Dependent CENSORING quantile Regression Semi-Competing RISKS DATA
下载PDF
Probabilistic Quantile Regression-Based Scour Estimation Considering Foundation Widths and Flood Conditions
10
作者 Chen Wang Fayun Liang Jingru Li 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2021年第1期30-41,共12页
Scour has been widely accepted as a key reason for bridge failures.Bridges are susceptible and sensitive to the scour phenomenon,which describes the loss of riverbed sediments around the bridge supports because of flo... Scour has been widely accepted as a key reason for bridge failures.Bridges are susceptible and sensitive to the scour phenomenon,which describes the loss of riverbed sediments around the bridge supports because of flow.The carrying capacity of a deep-water foundation is influenced by the formation of a scour hole,which means that a severe scour can lead to a bridge failure without warning.Most of the current scour predictions are based on deterministic models,while other loads at bridges are usually provided as probabilistic values.To integrate scour factors with other loads in bridge design and research,a quantile regression model was utilized to estimate scour depth.Field data and experimental data from previous studies were collected to build the model.Moreover,scour estimations using the HEC-18 equation and the proposed method were compared.By using the“CCC(Calculate,Confirm,and Check)”procedure,the probabilistic concept could be used to calculate various scour depths with the targeted likelihood according to a specified chance of bridge failure.The study shows that with a sufficiently large and continuously updated database,the proposed model could present reasonable results and provide guidance for scour mitigation. 展开更多
关键词 bridge scour scour estimation quantile regression probabilistic model deterministic models
下载PDF
L1/2 -Regularized Quantile Method for Sparse Phase Retrieval
11
作者 Si Shen Jiayao Xiang +1 位作者 Huijuan Lv Ailing Yan 《Open Journal of Applied Sciences》 CAS 2022年第12期2135-2151,共17页
The sparse phase retrieval aims to recover the sparse signal from quadratic measurements. However, the measurements are often affected by outliers and asymmetric distribution noise. This paper introduces a novel metho... The sparse phase retrieval aims to recover the sparse signal from quadratic measurements. However, the measurements are often affected by outliers and asymmetric distribution noise. This paper introduces a novel method that combines the quantile regression and the L<sub>1/2</sub>-regularizer. It is a non-convex, non-smooth, non-Lipschitz optimization problem. We propose an efficient algorithm based on the Alternating Direction Methods of Multiplier (ADMM) to solve the corresponding optimization problem. Numerous numerical experiments show that this method can recover sparse signals with fewer measurements and is robust to dense bounded noise and Laplace noise. 展开更多
关键词 Sparse Phase Retrieval Nonconvex Optimization Alternating Direction Method of Multipliers quantile Regression model ROBUSTNESS
下载PDF
基于改进INFO-CNN-QRGRU模型的农村分布式光伏发电短期概率预测
12
作者 王俊 邱爽 +3 位作者 鞠丹阳 谢易澎 张楠楠 王慧 《沈阳农业大学学报》 CAS CSCD 北大核心 2024年第4期490-502,共13页
随着“双碳”目标的推进,清洁能源所占比重大幅度增加,分布式光伏发电在我国农村地区快速发展,但其随机性、间歇性的特点给新能源消纳和电网稳定带来很大的挑战。光伏发电预测可以在一定程度上改善新能源消纳问题,减少光伏发电的不稳定... 随着“双碳”目标的推进,清洁能源所占比重大幅度增加,分布式光伏发电在我国农村地区快速发展,但其随机性、间歇性的特点给新能源消纳和电网稳定带来很大的挑战。光伏发电预测可以在一定程度上改善新能源消纳问题,减少光伏发电的不稳定性对电网的冲击。因此,为提高光伏发电功率预测精度,提出一种基于改进向量加权平均算法优化CNN-QRGRU网络的光伏发电概率预测方法。首先采用ReliefF算法对特征变量进行选择,在此基础上利用高斯混合模型(Gaussian mixture model,GMM)聚类方法将天气分为晴天、晴转多云和阴雨天3种类型,将处理好的数据输入到CNN-GRU模型中,并利用向量加权平均(weighted mean of vectors algorithm,INFO)优化算法对模型超参数进行调参,将分位数回归模型(quantile regression,QR)与INFO-CNN-GRU模型相结合得到光伏功率条件分布,结合核密度估计法从条件分布中获得概率密度函数,完成概率预测。以实际光伏电站数据作为基础,将提出的INFO优化算法与其他几种传统的优化算法进行对比,结果表明INFO的优化效果更好,在此基础上进行概率预测,得到的概率预测结果相较于点预测能提供更多有效信息,更具有应用价值。 展开更多
关键词 光伏出力 高斯混合模型聚类 门控循环单元 向量加权平均算法 分位数回归 概率预测
下载PDF
新冠肺炎疫情对猪肉价格的影响——基于多期DID模型的考察
13
作者 李银淑 周杨 《家畜生态学报》 北大核心 2024年第6期57-64,共8页
以新冠肺炎疫情的突然爆发作为切入点,将疫情爆发地区和未爆发地区视为一次部分省份冲击猪肉价格的准自然试验,采用多期DID模型考察新冠肺炎疫情对猪肉价格的影响,并构建DID-QR模型检验新冠肺炎疫情对猪肉价格的处理效应在不同初始价格... 以新冠肺炎疫情的突然爆发作为切入点,将疫情爆发地区和未爆发地区视为一次部分省份冲击猪肉价格的准自然试验,采用多期DID模型考察新冠肺炎疫情对猪肉价格的影响,并构建DID-QR模型检验新冠肺炎疫情对猪肉价格的处理效应在不同初始价格增长率和不同制度环境下的表现形式。结果表明,新冠肺炎疫情的爆发导致猪肉价格出现大幅度上涨,平均涨幅约为10%;受疫情影响的猪肉价格呈现上涨、平稳、再上涨、再平稳、下跌的变化趋势,在考察期内仅次月、3月、6月和7月涨幅明显,10月开始出现明显的下降趋势。新冠肺炎疫情的爆发拉大了不同地区猪肉价格水平的差距,且疫情对价格的提升作用在初始农业经济发展水平较低地区和初始经济发展水平较高地区较为明显。为此,政府应根据猪肉价格在不同条件下的异质性,有的放矢的采取平抑措施,并通过建立各产业链环节主体衔接机制和完善公共信息平台的方式,减弱猪肉市场受突发性外部冲击的影响。 展开更多
关键词 新冠肺炎疫情 猪肉价格 准自然实验 双重差分模型 分位数回归模型
下载PDF
考虑多前车位置及分位数速度差跟驰模型稳定性分析
14
作者 潘义勇 全勇俊 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第5期48-54,共7页
为探究交通流特性对车辆跟驰行为的影响,基于分位数回归方法对跟驰模型进行改进,通过稳定性分析方法利用车头间距描述交通拥堵情况。根据分位数回归方法对模型中的优化速度函数进行改进,并将其应用于考虑多前车位置及速度差跟驰模型,使... 为探究交通流特性对车辆跟驰行为的影响,基于分位数回归方法对跟驰模型进行改进,通过稳定性分析方法利用车头间距描述交通拥堵情况。根据分位数回归方法对模型中的优化速度函数进行改进,并将其应用于考虑多前车位置及速度差跟驰模型,使模型可以通过分位点的变换,在仿真过程中模拟不同驾驶风格的车辆。运用傅里叶变换理论推导出该模型的线性稳定性条件,并通过摄动法求得其修正Korteweg-de Vries(mKdV)方程的解,根据车头间距的扭结-反扭结解描述交通拥堵的变化情况。分析对比考虑不同因素的跟驰模型的稳定性临界曲线,为评估改进模型的有效性,搭建环形车道仿真平台并对改进模型进行数值实验。结果表明:在仿真实验中,随着分位点的增加,改进模型达到稳定状态的平均速度逐渐增加,车速分别为9.57、12.58、14.76 m/s;相比原模型,改进模型能够实现更少的位移波动,位移差最小为1.05 m;在混合模型实验中,随着激进驾驶风格车辆数量的增加,改进模型与多速度差模型相比,车队整体的平均速度达到12.42 m/s,位移波动能够达到稳定状态。 展开更多
关键词 交通工程 跟驰模型 多前车位置 分位数回归 稳定性分析
下载PDF
基于DPSIR模型的城市旅游经济韧性评价与影响因素——以长三角城市群为例
15
作者 方叶林 吴燕妮 +1 位作者 王秋月 王芳 《南京师大学报(自然科学版)》 CAS 北大核心 2024年第2期26-34,共9页
基于DPSIR模型构建旅游经济韧性指标体系,对2009—2021年长三角城市群旅游经济韧性水平进行测度,并分析其演化特征与影响因素,以期为旅游经济韧性提升提供一定决策依据.结果表明:长三角城市群旅游经济韧性呈现“先升后降”的变化趋势,... 基于DPSIR模型构建旅游经济韧性指标体系,对2009—2021年长三角城市群旅游经济韧性水平进行测度,并分析其演化特征与影响因素,以期为旅游经济韧性提升提供一定决策依据.结果表明:长三角城市群旅游经济韧性呈现“先升后降”的变化趋势,各城市韧性水平整体上呈上升趋势.韧性较高城市主要分布在中东部地区,各城市旅游经济韧性水平间具有一定空间集聚特征.旅游经济韧性受经济发展水平、经济发展结构、旅游发展速度、游客承载量、教育水平、基础设施和政府干预等因素的综合影响,其中旅游发展速度对旅游经济韧性具有明显负面影响,其他因素均具有显著促进作用. 展开更多
关键词 旅游经济系统 韧性 DPSIR模型 长三角城市群 面板分位数回归
下载PDF
黄河流域生态环境质量时空演变及驱动力分析
16
作者 董洁芳 武荣伟 赵艳芬 《水生态学杂志》 CSCD 北大核心 2024年第3期60-69,共10页
开展黄河流域生态环境质量时空格局演变及驱动因素研究,为黄河流域生态文明建设和人地和谐发展提供科学决策支持。基于2000-2022年的MODIS数据,利用遥感生态指数(RSEI)评估黄河流域生态环境质量,采用Sen趋势分析法和MK检验全面刻画RSEI... 开展黄河流域生态环境质量时空格局演变及驱动因素研究,为黄河流域生态文明建设和人地和谐发展提供科学决策支持。基于2000-2022年的MODIS数据,利用遥感生态指数(RSEI)评估黄河流域生态环境质量,采用Sen趋势分析法和MK检验全面刻画RSEI的空间演变特征。结合分位数回归模型和残差分析探究自然环境和人类活动对不同分位数RSEI变化的影响机制及相对贡献率。结果表明:2000-2022年,黄河流域RSEI年均值为0.465,年均增速为0.55%。黄河流域中游RSEI上升最为显著。流域RSEI改善的区域面积占比为74.94%,显著改善的区域为内蒙古中部及晋陕两省北部地区。同一因素对不同分位数RSEI的影响效应存在显著分异。随着RSEI分位点的提高,温度、降水及高程等3个变量影响程度均呈下降趋势。自然环境和人类活动共同作用导致黄河流域RSEI变化面积占比为64.00%,由人类活动导致RSEI变化的区域面积占比为20.62%,由自然环境导致RSEI变化的区域面积占比为15.38%。 展开更多
关键词 遥感生态指数 时空演化 驱动因素 分位数回归模型 黄河流域
下载PDF
数字普惠金融的收入增长与收入差距缩小效应研究——来自新疆的经验证据
17
作者 侯震梅 刁晓燕 《新疆农垦经济》 2024年第8期64-78,共15页
文章在城乡二元经济结构、金融发展与收入平等理论分析基础上,利用2011—2020年新疆地州面板数据,借助分位数回归和广义空间模型,研究新疆数字普惠金融对城乡居民收入增长的异质性及差距缩小效应。结果表明:数字普惠金融对于城乡居民收... 文章在城乡二元经济结构、金融发展与收入平等理论分析基础上,利用2011—2020年新疆地州面板数据,借助分位数回归和广义空间模型,研究新疆数字普惠金融对城乡居民收入增长的异质性及差距缩小效应。结果表明:数字普惠金融对于城乡居民收入增长具有异质性,且在不同收入水平的情况下,增长效应有差异;数字普惠金融对城乡收入差距有缩小效应,但是空间溢出效应不显著。分维度研究发现,覆盖广度和使用深度对城乡差距的缩小作用显著,但空间溢出效应均不显著。基于此,提出应加快边疆地区农村数字普惠金融建设规模与速度;合理配置金融资源,增强“一圈一带一群”中心城市对落后地区的辐射作用;加快现代化建设,推进城乡一体化发展。 展开更多
关键词 数字普惠金融 城乡收入差距 分位回归模型 空间计量模型
下载PDF
考虑异质交通流的随机参数优化速度跟驰模型
18
作者 潘义勇 全勇俊 管星宇 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2024年第4期415-422,共8页
为分析交通流异质性对车辆跟驰行为的影响,基于随机参数线性回归方法改进优化速度函数.根据分位数回归对交通流速度-密度数据进行分类,对每个类别数据进行随机参数线性回归,并得到不同类别的改进优化速度函数与假设检验结果,结合改进的... 为分析交通流异质性对车辆跟驰行为的影响,基于随机参数线性回归方法改进优化速度函数.根据分位数回归对交通流速度-密度数据进行分类,对每个类别数据进行随机参数线性回归,并得到不同类别的改进优化速度函数与假设检验结果,结合改进的优化速度函数和全速度差跟驰模型建立随机优化速度跟驰模型,利用傅里叶变化理论对跟驰模型进行稳定性分析,并搭建环形车道仿真平台对跟驰模型进行数值实验.结果表明,分类处理后的随机参数模型误差较未分类降低28%;随机参数跟驰车队的速度值随着0.5分位点车辆的增多而增大;随机参数跟驰模型车队较固定参数跟驰模型车队更能反映交通流异质性对车队的影响.建立的模型能够提高仿真维度,真实反映交通流的复杂运行状况. 展开更多
关键词 交通工程 交通流理论 分位数回归 随机参数线性回归 优化速度函数 跟驰模型 稳定性分析
下载PDF
基于混合效应和分位数回归的温带针阔混交林树高与胸径关系研究 被引量:2
19
作者 程雯 武晓昱 +3 位作者 叶尔江·拜克吐尔汉 王娟 赵秀海 张春雨 《北京林业大学学报》 CAS CSCD 北大核心 2024年第2期28-39,共12页
【目的】基于非线性回归和广义模型构建不同分位数回归和混合效应的树高预测方程,并对比分析非线性模型、不同分位点(τ=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9)模型、广义模型及非线性混合效应模型的拟合效果和预测精度,为研究林分生长... 【目的】基于非线性回归和广义模型构建不同分位数回归和混合效应的树高预测方程,并对比分析非线性模型、不同分位点(τ=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9)模型、广义模型及非线性混合效应模型的拟合效果和预测精度,为研究林分生长和收获提供理论依据。【方法】本研究以吉林蛟河地区针阔混交林的主要树种(红松、色木槭、紫椴和水曲柳)为研究对象,基于21.12 hm2样地数据,首先在11个广泛使用的树高方程基础模型中选定基础模型;其次探究林分变量对树高的影响并构建含林分变量的广义模型;最后在基础模型和广义模型的基础上,构建分位数模型,同时考虑样方效应对树高的影响,构建混合效应模型。【结果】(1)各树种均以Richards模型拟合精度更高,且具有生物学意义,选定为基础模型;考虑林分变量与树高的相关性以及模型收敛性,加入优势木高建立的广义模型能显著提高拟合效果。(2)各树种均为中位数τ=0.5时模型拟合效果最佳,且与非线性回归预测精度相近,红松、色木槭、紫椴和水曲柳最高R^(2)值分别为0.811、0.809、0.724和0.617,广义中位数回归预测能力得到进一步提高,R^(2)值分别为0.891、0.874、0.858和0.627。(3)混合效应模型相对其他模型能显著提高预测精度,其中基础混合模型略优于广义混合模型,4个树种R^(2)值达到0.937、0.919、0.906和0.643,表明包含样方效应的混合模型能得到更准确更稳定的预测结果。【结论】与传统方法建立的基础模型和广义模型以及两者的中位数回归模型相较,基于非线性混合效应构建的树高-胸径模型预测精度更高,其中基于基础混合效应构建的吉林蛟河地区混交林树高-胸径模型更具优越性和稳定性。 展开更多
关键词 分位数回归 树高-胸径模型 混合效应模型 广义模型 针阔混交林
下载PDF
应用地基激光雷达三维点云数据构建长白落叶松树干削度方程 被引量:3
20
作者 种雨丝 何培 +1 位作者 张兹鹏 姜立春 《东北林业大学学报》 CAS CSCD 北大核心 2024年第3期69-75,共7页
使用地基激光雷达(TLS)三维点云数据提取的落叶松干形数据,构建树干削度方程,为落叶松干形精准预测提供依据。以吉林省一面山林场和杨木林林场落叶松人工林为研究对象,获取71株落叶松点云信息,并提取树干干形数据。选择简单、可变指数... 使用地基激光雷达(TLS)三维点云数据提取的落叶松干形数据,构建树干削度方程,为落叶松干形精准预测提供依据。以吉林省一面山林场和杨木林林场落叶松人工林为研究对象,获取71株落叶松点云信息,并提取树干干形数据。选择简单、可变指数、三角函数和分段函数等9个基础削度方程进行比较,利用分位数回归和广义加性模型方法构建削度方程。结果表明:在9个基础削度方程中,Bi(2000)削度方程的拟合效果最好,多重共线性指标条件数也小于100;Bi(2000)基础削度方程构建的分位数回归模型,在9个分位点(τ=0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9)处均能收敛,其中在τ=0.5的分位点处的拟合效果最好,略优于非线性回归的拟合结果。在以相对直径为因变量,以相对高的平方根、胸径的平方和树高为自变量的广义加性削度方程中,6种光滑样条函数(三次回归样条函数(CR)、B-样条函数(BS)、薄板回归样条函数(TP)、P-样条函数(PS)、Duchon样条函数(DS)和高斯过程平滑样条函数(GP))的拟合效果相差不大,但广义加性削度方程使用(DS+CR)光滑样条函数比一种光滑样条函数的拟合效果好(相对误差4.407、均方根误差1.158、确定系数0.966),广义加性削度方程的各检验统计量均优于基础削度方程和分位数回归削度方程,且在树干相对高度10%~80%,广义加性削度方程也表现最优(相对误差4.534、均方根误差1.191、确定系数0.964)。因此,(DS+CR)组合光滑样条函数的广义加性削度方程预测精度最高,可用于该区域的落叶松干形预测。 展开更多
关键词 长白落叶松 树干削度 分位数回归 广义加性模型 留一交叉验证
下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部