期刊文献+
共找到4,246篇文章
< 1 2 213 >
每页显示 20 50 100
Transport through a Single Barrier on Monolayer MoS2
1
作者 程芳 任裔 孙金芳 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第10期98-101,共4页
We investigate theoretically quantum transport through a single barrier on monolayer MoS2. It is found that the transmission properties of spin-up (down) electrons in the K valley are the same as spin-down (up) el... We investigate theoretically quantum transport through a single barrier on monolayer MoS2. It is found that the transmission properties of spin-up (down) electrons in the K valley are the same as spin-down (up) electrons in the K' valley due to the time-reversal symmetry. Generally, the transmission probability for transport through an n-n-n (or p p-p) junction is an oscillating function of incident angle, barrier height, as well as the incident energy of electrons. The present transmission shows a directional-dependent tunneling depending sensitively on the spin orientation for transport through a p-p p junction. While for transport through an n-p-n junction, monolayers of MoS2 become opaque for almost all angles of incident Oo except for θ0-θ0m (the resonant angles). The positions and numbers of resonant peaks in the transmission are determined by the distance between the two barriers and the spin orientation. The conductance in such systems can be tuned significantly by changing the height of the electric potential. 展开更多
关键词 Transport through a single barrier on Monolayer MoS2
下载PDF
Single flow treatment degradation of antibiotics in water using falling-film dielectric barrier discharge
2
作者 许志远 章程 +4 位作者 伍云健 黄邦斗 席登科 张晓星 邵涛 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期27-36,共10页
The environmental contamination caused by antibiotics is increasingly conspicuous due to their widespread manufacture and misuse. Plasma has been employed in recent years for the remediation of antibiotic pollution in... The environmental contamination caused by antibiotics is increasingly conspicuous due to their widespread manufacture and misuse. Plasma has been employed in recent years for the remediation of antibiotic pollution in the environment. In this work, a falling-film dielectric barrier discharge was used to degrade the antibiotic tetracycline(TC) in water. The reactor combined the gas-liquid discharge and active gas bubbling to improve the TC degradation performance. The discharge characteristics, chemical species’ concentration, and degradation rates at different parameters were systematically studied. Under the optimized conditions(working gas was pure oxygen, liquid flow rate was 100 mL/min, gas flow rate was 1 L/min,voltage was 20 kV, single treatment), TC was removed beyond 70% in a single flow treatment with an energy efficiency of 145 mg/(kW·h). The reactor design facilitated gas and liquid flow in the plasma area to produce more ozone in bubbles after a single flow under pure oxygen conditions, affording fast TC degradation. Furthermore, long-term stationary experiment indicated that long-lived active species can sustain the degradation of TC. Compared with other plasma treatment systems, this work offers a fast and efficient degradation method, showing significant potential in practical industrial applications. 展开更多
关键词 antibiotic degradation dielectric barrier discharge reactive species single flow treatment
下载PDF
Single-atom Pt on carbon nanotubes for selective electrocatalysis 被引量:2
3
作者 Samuel S.Hardisty Xiaoqian Lin +1 位作者 Anthony R.J.Kucernak David Zitoun 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期63-71,共9页
Utilizing supported single atoms as catalysts presents an opportunity to reduce the usage of critical raw materials such as platinum,which are essential for electrochemical reactions such as hydrogen oxidation reactio... Utilizing supported single atoms as catalysts presents an opportunity to reduce the usage of critical raw materials such as platinum,which are essential for electrochemical reactions such as hydrogen oxidation reaction(HOR).Herein,we describe the synthesis of a Pt single electrocatalyst inside single-walled carbon nanotubes(SWCNTs)via a redox reaction.Characterizations via electron microscopy,X-ray photoelectron microscopy,and X-ray absorption spectroscopy show the single-atom nature of the Pt.The electrochemical behavior of the sample to hydrogen and oxygen was investigated using the advanced floating electrode technique,which minimizes mass transport limitations and gives a thorough insight into the activity of the electrocatalyst.The single-atom samples showed higher HOR activity than state-of-the-art 30%Pt/C while almost no oxygen reduction reaction activity in the proton exchange membrane fuel cell operating range.The selective activity toward HOR arose as the main fingerprint of the catalyst confinement in the SWCNTs. 展开更多
关键词 CONFINEMENT ELECTROCATALYSIS hydrogen PLATINUM single atom catalysts
下载PDF
Metal-organic framework-based single-atom electro-/ photocatalysts: Synthesis, energy applications, and opportunities 被引量:2
4
作者 Munir Ahmad Jiahui Chen +10 位作者 Jianwen Liu Yan Zhang Zhongxin Song Shahzad Afzal Waseem Raza Liaqat Zeb Andleeb Mehmood Arshad Hussain Jiujun Zhang Xian-Zhu Fu Jing-Li Luo 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期1-43,共43页
Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further de... Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further development.In the last few years,metal–organic frameworks(MOFs)have received significant consideration as ideal candidates for synthesizing SACs due to their tailorable chemistry,tunable morphologies,high porosity,and chemical/thermal stability.From this perspective,this review thoroughly summarizes the previously reported methods and possible future approaches for constructing MOF-based(MOF-derived-supported and MOF-supported)SACs.Then,MOF-based SAC's identification techniques are briefly assessed to understand their coordination environments,local electronic structures,spatial distributions,and catalytic/electrochemical reaction mechanisms.This review systematically highlights several photocatalytic and electrocatalytic applications of MOF-based SACs for energy conversion and storage,including hydrogen evolution reactions,oxygen evolution reactions,O_(2)/CO_(2)/N_(2) reduction reactions,fuel cells,and rechargeable batteries.Some light is also shed on the future development of this highly exciting field by highlighting the advantages and limitations of MOF-based SACs. 展开更多
关键词 carbon energy generation MOF-derived-supported MOF-supported single atoms
下载PDF
Optimizing high-coordination shell of Co-based single-atom catalysts for efficient ORR and zinc-air batteries 被引量:1
5
作者 Yugang Qi Qing Liang +9 位作者 Kexin Song Xinyan Zhou Meiqi Liu Wenwen Li Fuxi Liu Zhou Jiang Xu Zou Zhongjun Chen Wei Zhang Weitao Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期306-314,I0007,共10页
Atom-level modulation of the coordination environment for single-atom catalysts(SACs)is considered as an effective strategy for elevating the catalytic performance.For the MNxsite,breaking the symmetrical geometry and... Atom-level modulation of the coordination environment for single-atom catalysts(SACs)is considered as an effective strategy for elevating the catalytic performance.For the MNxsite,breaking the symmetrical geometry and charge distribution by introducing relatively weak electronegative atoms into the first/second shell is an efficient way,but it remains challenging for elucidating the underlying mechanism of interaction.Herein,a practical strategy was reported to rationally design single cobalt atoms coordinated with both phosphorus and nitrogen atoms in a hierarchically porous carbon derived from metal-organic frameworks.X-ray absorption spectrum reveals that atomically dispersed Co sites are coordinated with four N atoms in the first shell and varying numbers of P atoms in the second shell(denoted as Co-N/P-C).The prepared catalyst exhibits excellent oxygen reduction reaction(ORR)activity as well as zinc-air battery performance.The introduction of P atoms in the Co-SACs weakens the interaction between Co and N,significantly promoting the adsorption process of ^(*)OOH,resulting in the acceleration of reaction kinetics and reduction of thermodynamic barrier,responsible for the increased intrinsic activity.Our discovery provides insights into an ultimate design of single-atom catalysts with adjustable electrocatalytic activities for efficient electrochemical energy conversion. 展开更多
关键词 ELECTROCATALYTIC Oxygen reduction reaction single atom catalyst Shell coordination optimization
下载PDF
A modified single edge V-notched beam method for evaluating surface fracture toughness of thermal barrier coatings
6
作者 Haoran BAI Zhanyu WANG +2 位作者 Sangyu LUO Zhaoliang QU Daining FANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第5期693-710,共18页
The surface fracture toughness is an important mechanical parameter for studying the failure behavior of air plasma sprayed(APS)thermal barrier coatings(TBCs).As APS TBCs are typical multilayer porous ceramic material... The surface fracture toughness is an important mechanical parameter for studying the failure behavior of air plasma sprayed(APS)thermal barrier coatings(TBCs).As APS TBCs are typical multilayer porous ceramic materials,the direct applications of the traditional single edge notched beam(SENB)method that ignores those typical structural characters may cause errors.To measure the surface fracture toughness more accurately,the effects of multilayer and porous characters on the fracture toughness of APS TBCs should be considered.In this paper,a modified single edge V-notched beam(MSEVNB)method with typical structural characters is developed.According to the finite element analysis(FEA),the geometry factor of the multilayer structure is recalculated.Owing to the narrower V-notches,a more accurate critical fracture stress is obtained.Based on the Griffith energy balance,the reduction of the crack surface caused by micro-defects is corrected.The MSEVNB method can measure the surface fracture toughness more accurately than the SENB method. 展开更多
关键词 thermal barrier coating(TBC) surface fracture toughness modified single edge V-notched beam(MSEVNB)method multilayer structure micro-defect
下载PDF
Treatment of Single Level Lumbar Spondylolisthesis with Lumbar Interbody Fusion via Oblique Lateral Approach (OLIF)
7
作者 Jinpeng Zheng Dun Liu +3 位作者 Jing Shi Han Wu Ping Cao Bing Hu 《Surgical Science》 2023年第1期46-54,共9页
Objectives: To investigate the effect of lumbar interbody fusion via the oblique lateral approach (OLIF) in the treatment of single level lumbar spondylolisthesis. Methods: Retrospective analysis was made on 32 cases ... Objectives: To investigate the effect of lumbar interbody fusion via the oblique lateral approach (OLIF) in the treatment of single level lumbar spondylolisthesis. Methods: Retrospective analysis was made on 32 cases of single level lumbar spondylolisthesis treated by lumbar interbody fusion via the oblique lateral approach from July 2020 to July 2021. 14 males and 18 females;the age was (66.5 ± 11.5) years (55 - 82 years). 1) The operation time, intraoperative blood loss and complications were recorded;2) the scores of visual analog scale. VAS and Oswestry disability index (ODI) of low back pain and lower limb pain were collected before operation and at the last follow-up;by observing the imaging data, the height of the intervertebral space, the anterior convex angle of the intervertebral space, the anterior convex angle of the lumbar spine, the sagittal diameter of the dural sac and the spondylolisthesis were measured. Results: All patients successfully completed the operation, the average operation time was (103.9 ± 21.1) min, the average intraoperative bleeding volume was (72.3 ± 16.4) ml. There was no vascular injury during the operation, no infection occurred in all surgical incisions, and Class I/A healing was achieved. The VAS scores of low back pain and leg pain before operation and at the last follow-up were lower than those before operation, and the difference was statistically significant (P < 0.05);the ODI at the last follow-up was lower than that before operation, and the difference was statistically significant (P < 0.05). At the last follow-up, the height of intervertebral space, the height of intervertebral foramen and the sagittal diameter of dural sac were greater than those before operation, with statistically significant differences (P < 0.05);the spondylolisthesis rate at the last follow-up was lower than that before operation, with a statistically significant difference (P < 0.05). Left thigh surface numbness occurred in 2 cases (6.3%) and disappeared after 1 week;Hip flexion weakness occurred in 1 case (0.03%), which recovered after 12 days;there were no complications such as retroperitoneal hematoma, ureteral injury, retrograde ejaculation, intestinal and lumbar plexus injury. Conclusion: The early clinical effect of OLIF in the treatment of single level lumbar spondylolisthesis is significant. This surgical method is minimally invasive, safe and effective, which can significantly reduce the amount of intraoperative bleeding and reduce the risk of postoperative complications. Its main working principle is to make the annulus fibrosus, posterior longitudinal ligament and ligamentum flavum shrink and recover the height of the intervertebral space through decompression, loosening and stretching of the intervertebral space, so as to achieve the reduction of the slipped vertebral body, increase the height of the intervertebral foramen Enlarge the spinal canal volume and eliminate dynamic compression to play an indirect decompression role, improve the symptoms of low back and leg pain, and reconstruct the stability of the spine through interbody fusion. 展开更多
关键词 Oblique Lateral Approach Lumbar Interbody Fusion single Segment Lumbar Spondylolisthesis
下载PDF
Advances of Synergistic Electrocatalysis Between Single Atoms and Nanoparticles/Clusters
8
作者 Guanyu Luo Min Song +6 位作者 Qian Zhang Lulu An Tao Shen Shuang Wang Hanyu Hu Xiao Huang Deli Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期377-412,共36页
Combining single atoms with clusters or nanoparticles is an emerging tactic to design efficient electrocatalysts.Both synergy effect and high atomic utilization of active sites in the composite catalysts result in enh... Combining single atoms with clusters or nanoparticles is an emerging tactic to design efficient electrocatalysts.Both synergy effect and high atomic utilization of active sites in the composite catalysts result in enhanced electrocatalytic performance,simultaneously provide a radical analysis of the interrelationship between structure and activity.In this review,the recent advances of single-atomic site catalysts coupled with clusters or nanoparticles are emphasized.Firstly,the synthetic strategies,characterization,dynamics and types of single atoms coupled with clusters/nanoparticles are introduced,and then the key factors controlling the structure of the composite catalysts are discussed.Next,several clean energy catalytic reactions performed over the synergistic composite catalysts are illustrated.Eventually,the encountering challenges and recommendations for the future advancement of synergistic structure in energy-transformation electrocatalysis are outlined. 展开更多
关键词 single atoms NANOPARTICLES CLUSTERS Synergistic composite catalysts Synergistic effect
下载PDF
Study of leakage current degradation based on stacking faults expansion in irradiated SiC junction barrier Schottky diodes
9
作者 Maojiu Luo Yourun Zhang +5 位作者 Yucheng Wang Hang Chen Rong Zhou Zhi Wang Chao Lu Bo Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期458-464,共7页
A comprehensive investigation was conducted to explore the degradation mechanism of leakage current in SiC junction barrier Schottky(JBS)diodes under heavy ion irradiation.We propose and verify that the generation of ... A comprehensive investigation was conducted to explore the degradation mechanism of leakage current in SiC junction barrier Schottky(JBS)diodes under heavy ion irradiation.We propose and verify that the generation of stacking faults(SFs)induced by the recombination of massive electron-hole pairs during irradiation is the cause of reverse leakage current degradation based on experiments results.The irradiation experiment was carried out based on Ta ions with high linear energy transfer(LET)of 90.5 MeV/(mg/cm^(2)).It is observed that the leakage current of the diode undergoes the permanent increase during irradiation when biased at 20%of the rated reverse voltage.Micro-PL spectroscopy and PL micro-imaging were utilized to detect the presence of SFs in the irradiated SiC JBS diodes.We combined the degraded performance of irradiated samples with SFs introduced by heavy ion irradiation.Finally,three-dimensional(3D)TCAD simulation was employed to evaluate the excessive electron-hole pairs(EHPs)concentration excited by heavy ion irradiation.It was observed that the excessive hole concentration under irradiation exceeded significantly the threshold hole concentration necessary for the expansion of SFs in the substrate.The proposed mechanism suggests that the process and material characteristics of the silicon carbide should be considered in order to reinforcing against the single event effect of SiC power devices. 展开更多
关键词 4H-SiC JBS diode heavy ion irradiation single event effect single event leakage current degradation
下载PDF
Enhancing thermodynamic stability of single-crystal Ni-rich cathode material via a synergistic dual-substitution strategy
10
作者 Jixue Shen Hui Li +6 位作者 Haoyu Qi Zhan Lin Zeheng Li Chuanbo Zheng Weitong Du Hao Chen Shanqing Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期428-436,I0010,共10页
Nickel(Ni)-rich cathode materials have become promising candidates for the next-generation electrical vehicles due to their high specific capacity.However,the poor thermodynamic stability(including cyclic performance ... Nickel(Ni)-rich cathode materials have become promising candidates for the next-generation electrical vehicles due to their high specific capacity.However,the poor thermodynamic stability(including cyclic performance and safety performance or thermal stability)will restrain their wide commercial application.Herein,a single-crystal Ni-rich Li Ni_(0.83)Co_(0.12)Mn_(0.05)O_(2) cathode material is synthesized and modified by a dual-substitution strategy in which the high-valence doping element improves the structural stability by forming strong metal–oxygen binding forces,while the low-valence doping element eliminates high Li^(+)/Ni^(2+)mixing.As a result,this synergistic dual substitution can effectively suppress H2-H3 phase transition and generation of microcracks,thereby ultimately improving the thermodynamic stability of Ni-rich cathode material.Notably,the dual-doped Ni-rich cathode delivers an extremely high capacity retention of 81%after 250 cycles(vs.Li/Li+)in coin-type half cells and 87%after 1000 cycles(vs.graphite/Li^(+))in pouch-type full cells at a high temperature of 55℃.More impressively,the dual-doped sample exhibits excellent thermal stability,which demonstrates a higher thermal runaway temperature and a lower calorific value.The synergetic effects of this dual-substitution strategy pave a new pathway for addressing the critical challenges of Ni-rich cathode at high temperatures,which will significantly advance the high-energy-density and high-safety cathodes to the subsequent commercialization. 展开更多
关键词 Ni-rich cathode single crystalline Dual-substitution strategy High-temperature cathode Li-ion batteries
下载PDF
Highly Sensitive Ammonia Gas Sensors at Room Temperature Based on the Catalytic Mechanism of N,C Coordinated Ni Single-Atom Active Center
11
作者 Wenjing Quan Jia Shi +10 位作者 Min Zeng Wen Lv Xiyu Chen Chao Fan Yongwei Zhang Zhou Liu Xiaolu Huang Jianhua Yang Nantao Hu Tao Wang Zhi Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期515-531,共17页
Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia(NH3).In this study,we propose to exploit single-atom catalytic activation and targeted adsorption prop... Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia(NH3).In this study,we propose to exploit single-atom catalytic activation and targeted adsorption properties to achieve highly sensitive and selective NH3 gas detection.Specifically,Ni singleatom active sites based on N,C coordination(Ni-N-C)were interfacially confined on the surface of two-dimensional(2D)MXene nanosheets(Ni-N-C/Ti_(3)C_(2)Tx),and a fully flexible gas sensor(MNPE-Ni-N-C/Ti_(3)C_(2)Tx)was integrated.The sensor demonstrates a remarkable response value to 5 ppm NH3(27.3%),excellent selectivity for NH3,and a low theoretical detection limit of 12.1 ppb.Simulation analysis by density functional calculation reveals that the Ni single-atom center with N,C coordination exhibits specific targeted adsorption properties for NH3.Additionally,its catalytic activation effect effectively reduces the Gibbs free energy of the sensing elemental reaction,while its electronic structure promotes the spill-over effect of reactive oxygen species at the gas-solid interface.The sensor has a dual-channel sensing mechanism of both chemical and electronic sensitization,which facilitates efficient electron transfer to the 2D MXene conductive network,resulting in the formation of the NH3 gas molecule sensing signal.Furthermore,the passivation of MXene edge defects by a conjugated hydrogen bond network enhances the long-term stability of MXene-based electrodes under high humidity conditions.This work achieves highly sensitive room-temperature NH3 gas detection based on the catalytic mechanism of Ni single-atom active center with N,C coordination,which provides a novel gas sensing mechanism for room-temperature trace gas detection research. 展开更多
关键词 Gas sensor single atom Catalytic activation Targeted adsorption End-sealing passivation
下载PDF
Structure design and electrochemical properties of carbon-based single atom catalysts in energy catalysis:A review
12
作者 Shuqi Li Xincheng Lu +8 位作者 Shuling Liu Jingjing Zhou Yanyan Liu Huanhuan Zhang Ruofan Shen Kang Sun Jianchun Jiang Yongfeng Wang Baojun Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期196-236,共41页
Single atom catalysts(SACs) possessing regulated electronic structure, high atom utilization, and superior catalytic efficiency have been studied in almost all fields in recent years. Carbon-based supporting SACs are ... Single atom catalysts(SACs) possessing regulated electronic structure, high atom utilization, and superior catalytic efficiency have been studied in almost all fields in recent years. Carbon-based supporting SACs are becoming popular materials because of their low cost, high electron conductivity, and controllable surface property. At the stage of catalysts preparation, the rational design of active sites is necessary for the substantial improvement of activity of catalysts. To date, the reported design strategies are mainly about synthesis mechanism and synthetic method. The level of understanding of design strategies of carbon-based single atom catalysts is requiring deep to be paved. The design strategies about manufacturing defects and coordination modulation of catalysts are presented. The design strategies are easy to carry out in the process of drawing up preparation routes. The components of carbon-based SACs can be divided into two parts: active site and carbon skeleton. In this review, the manufacture of defects and coordination modulation of two parts are introduced, respectively. The structure features and design strategies from the active sites and carbon skeletons to the overall catalysts are deeply discussed.Then, the structural design of different nano-carbon SACs is introduced systematically. The characterization of active site and carbon skeleton and the detailed mechanism of reaction process are summarized and analyzed. Next, the applications in the field of electrocatalysis for oxygen conversion and hydrogen conversion are illustrated. The relationships between the superior performance and the structure of active sites or carbon skeletons are discussed. Finally, the conclusion of this review and prospects on the abundant space for further promotion in broader fields are depicted. This review highlights the design and preparation thoughts from the parts to the whole. The detailed and systematic discussion will provide useful guidance for design of SACs for readers. 展开更多
关键词 Carbon materials Coordination chemistry Defective structure Energy catalysis single atom catalysts
下载PDF
Cooperation between single atom catalyst and support to promote nitrogen electroreduction to ammonia:A theoretical insight
13
作者 Wanying Guo Siyao Wang +2 位作者 Hongxia Wang Qinghai Cai Jingxiang Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期336-344,共9页
The co-catalysis between single atom catalyst(SAC)and its support has recently emerged as a promising strategy to synergistically boost the catalytic activity of some complex electrochemical reactions,encompassing mul... The co-catalysis between single atom catalyst(SAC)and its support has recently emerged as a promising strategy to synergistically boost the catalytic activity of some complex electrochemical reactions,encompassing multiple intermediates and pathways.Herein,we utilized defective BC_(3)monolayer-supported SACs as a prototype to investigate the cooperative effects of SACs and their support on the catalytic performance of the nitrogen reduction reaction(NRR)for ammonia(NH_(3))production.The results showed that these SACs can be firmly stabilized on these defective BC_(3)supports with high stability against aggregation.Furthermore,co-activation of the inert N_(2)reactant was observed in certain embedded SACs and their neighboring B atoms on certain BC3 sheets due to the noticeable charge transfer and significant N–N bond elongation.Our high-throughput screening revealed that the Mo/DV_(CC)and W/DV_(CC)exhibit superior NRR catalytic performance,characterized by a low limiting potential of−0.33 and−0.43 V,respectively,which can be further increased under acid conditions based on the constant potential method.Moreover,varying NRR catalytic activities can be attributed to the differences in the valence state of active sites.Remarkably,further microkinetic modeling analysis displayed that the turnover frequency of N_(2)–to–NH_(3)conversion on Mo/DV_(CC)is as large as 1.20×10^(−3)s^(−1)site^(−1) at 700 K and 100 bar,thus guaranteeing its ultra-fast reaction rate.Our results not only suggest promising advanced electrocatalysts for NRR but also offer an effective avenue to regulate the electrocatalytic performance via the co-catalytic metal–support interactions. 展开更多
关键词 CO-CATALYSIS single atom catalyst Nitrogen reduction DFT computations
下载PDF
Preparation of single atom catalysts for high sensitive gas sensing
14
作者 Xinxin He Ping Guo +7 位作者 Xuyang An Yuyang Li Jiatai Chen Xingyu Zhang Lifeng Wang Mingjin Dai Chaoliang Tan Jia Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期216-248,共33页
Single atom catalysts(SACs)have garnered significant attention in the field of catalysis over the past decade due to their exceptional atom utilization efficiency and distinct physical and chemical properties.For the ... Single atom catalysts(SACs)have garnered significant attention in the field of catalysis over the past decade due to their exceptional atom utilization efficiency and distinct physical and chemical properties.For the semiconductor-based electrical gas sensor,the core is the catalysis process of target gas molecules on the sensitive materials.In this context,the SACs offer great potential for highly sensitive and selective gas sensing,however,only some of the bubbles come to the surface.To facilitate practical applications,we present a comprehensive review of the preparation strategies for SACs,with a focus on overcoming the challenges of aggregation and low loading.Extensive research efforts have been devoted to investigating the gas sensing mechanism,exploring sensitive materials,optimizing device structures,and refining signal post-processing techniques.Finally,the challenges and future perspectives on the SACs based gas sensing are presented. 展开更多
关键词 single atom catalysts PREPARATION sensing mechanism gas sensing
下载PDF
Oxidation behavior of 4774DD1 Ni-based single-crystal superalloy at 980℃ in air
15
作者 Yu Fang Ya-zhou Li +7 位作者 Qiang Yang Qun-gong He Xiu-fang Gong Qian Duan Hai-yang Song Fu Wang Qiong-yuan Zhang Hong Zeng 《China Foundry》 SCIE EI CAS CSCD 2024年第2期116-124,共9页
The oxidation behavior of a novel Ni-based single-crystal 4774DD1 superalloy for industrial gas turbine applications was investigated by the isothermal oxidation at 980℃ and discontinuous oxidation weight gain method... The oxidation behavior of a novel Ni-based single-crystal 4774DD1 superalloy for industrial gas turbine applications was investigated by the isothermal oxidation at 980℃ and discontinuous oxidation weight gain methods.The phase constitution and morphology of surface oxides and the characteristics of the crosssection oxide film were analyzed by XRD,SEM and EDS.Results show that the oxidation kinetics of the 4774DD1 superalloy follows the cubic law,indicating its weak oxidation resistance at this temperature.As the oxidation time increases,the composition of the oxide film evolves as following:One layer consisting of a bottom Al_(2)O_(3)sublayer and an upper(Al_(2)O_(3)+NiO)mixture sublayer after oxidized for 25 h.Then,two layers composed of an outermost small NiO discontinuous grain layer and an internal layer for 75 h.This internal layer is consisted of the bottom Al_(2)O_(3)sublayer,an intermediate narrow CrTaO_(4)sublayer,and an upper(Al_(2)O_(3)+NiO)mixture sublayer.Also two layers comprising an outermost relative continuous NiO layer with large grain size and an internal layer as the oxidation time increases to 125 h.This internal layer is composed of the upper(Al_(2)O_(3)+NiO)mixture sublayer,an intermediate continuous(CrTaO_(4)+NiWO_(4))mixture sublayer,and a bottom Al_(2)O_(3)sublayer.Finally,three layers consisting of an outermost(NiAl2O_(4)+NiCr2O_(4))mixture layer,an intermediate(CrTaO_(4)+NiWO_(4))mixture layer,and a bottom Al_(2)O_(3)layer for 200 h. 展开更多
关键词 nickel-base single crystal superalloy oxidation kinetics oxide film MICROSTRUCTURE mechanism
下载PDF
Manipulating photogenerated electron flow in nickel single‐atom catalysts for photocatalytic CO_(2) reduction into tunable syngas
16
作者 Yida Zhang Qingyu Wang +5 位作者 Lihui Wu Haibin Pan Chengyuan Liu Yue Lin Gongming Wang Xusheng Zheng 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期205-213,共9页
The key to designing photocatalysts is to orient the migration of photogenerated electrons to the target active sites rather than dissipate at inert sites.Herein,we demonstrate that the doping of phosphorus(P)signific... The key to designing photocatalysts is to orient the migration of photogenerated electrons to the target active sites rather than dissipate at inert sites.Herein,we demonstrate that the doping of phosphorus(P)significantly enriches photogenerated electrons at Ni active sites and enhances the performance for CO_(2) reduction into syngas.During photocatalytic CO_(2) reduction,Ni single‐atom‐anchored P‐modulated carbon nitride showed an impressive syngas yield rate of 85μmol gcat^(−1)h^(−1) and continuously adjustable CO/H_(2) ratios ranging from 5:1 to 1:2,which exceeded those of most of the reported carbon nitride‐based single‐atom catalysts.Mechanistic studies reveal that P doping improves the conductivity of catalysts,which promotes photogenerated electron transfer to the Ni active sites rather than dissipate randomly at low‐activity nonmetallic sites,facilitating the CO_(2)‐to‐syngas photoreduction process. 展开更多
关键词 carbon nitride CO_(2) photoreduction electron flow Ni single atoms SYNGAS
下载PDF
Lattice strain induced by trace Pt single atoms in nickel for accelerating industrial hydrogen evolution
17
作者 Rui Yao Yun Wu +4 位作者 Kaiyang Zhang Shuhui Fan Qiang Zhao Jinping Li Guang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期503-511,共9页
Strategically designing the electrocatalytic system and cleverly inducing strain is an effective approach to balance the cost and activity of Pt-based electrocatalysts for industrial-scale hydrogen production.Herein,w... Strategically designing the electrocatalytic system and cleverly inducing strain is an effective approach to balance the cost and activity of Pt-based electrocatalysts for industrial-scale hydrogen production.Herein,we present a unipolar pulsed electrodeposition(UPED) strategy to induce strain in the Ni lattice by introducing trace amounts of Pt single atoms(SAs)(0.22 wt%).The overpotential decreased by 183 mV at 10 mA cm^(-2) in 1.0 M KOH after introducing trace amounts of Pt_(SAs).The industrial electrolyzer,assembled with Pt_(SAs)Ni cathode and a commercial NiFeO_(x) anode,requires a cell voltage of 1.90 V to attain 1 A cm^(-2) of current density and remains stable for 280 h,demonstrating significant potential for practical applications.Spherical aberration corrected scanning transmission electron microscopy(AC-STEM),X-ray absorption(XAS),and geometric phase analysis(GPA) indicate that the introduction of trace amounts of Pt SAs induces tensile strain in the Ni lattice,thereby altering the local electronic structure and coordination environment around cubic Ni for enhancing the water decomposition kinetics and fundamentally changing the reaction pathway.The doping-strain strategy showcases conformational relationships that could offer new ideas to construct efficient hydrogen evolution reaction(HER) electrocatalysts for industrial hydrogen production in the future. 展开更多
关键词 Unipolar pulsed electrodeposition Pt single atoms Ni lattice Hydrogen evolution reaction H intermediates
下载PDF
Single event effects evaluation on convolution neural network in Xilinx 28 nm system on chip
18
作者 赵旭 杜雪成 +4 位作者 熊旭 马超 杨卫涛 郑波 周超 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期638-644,共7页
Convolutional neural networks(CNNs) exhibit excellent performance in the areas of image recognition and object detection, which can enhance the intelligence level of spacecraft. However, in aerospace, energetic partic... Convolutional neural networks(CNNs) exhibit excellent performance in the areas of image recognition and object detection, which can enhance the intelligence level of spacecraft. However, in aerospace, energetic particles, such as heavy ions, protons, and alpha particles, can induce single event effects(SEEs) that lead CNNs to malfunction and can significantly impact the reliability of a CNN system. In this paper, the MNIST CNN system was constructed based on a 28 nm systemon-chip(SoC), and then an alpha particle irradiation experiment and fault injection were applied to evaluate the SEE of the CNN system. Various types of soft errors in the CNN system have been detected, and the SEE cross sections have been calculated. Furthermore, the mechanisms behind some soft errors have been explained. This research will provide technical support for the design of radiation-resistant artificial intelligence chips. 展开更多
关键词 single event effects convolutional neural networks alpha particle system on chip fault injection
下载PDF
Cryptanalysis of efficient semi-quantum secret sharing protocol using single particles
19
作者 高甘 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期254-257,共4页
In paper[Chin.Phys.B 32070308(2023)],Xing et al.proposed a semi-quantum secret sharing protocol by using single particles.We study the security of the proposed protocol and find that it is not secure,that is,the three... In paper[Chin.Phys.B 32070308(2023)],Xing et al.proposed a semi-quantum secret sharing protocol by using single particles.We study the security of the proposed protocol and find that it is not secure,that is,the three dishonest agents,Bob,Charlie and Emily can collude to obtain Alice's secret without the help of David. 展开更多
关键词 security loophole rearranging orders semi-quantum secret sharing single particles
下载PDF
Single crystal growth and transport properties of narrow-bandgap semiconductor RhP_(2)
20
作者 吴德胜 郑萍 雒建林 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期545-549,共5页
We report the growth of high-quality single crystals of RhP_(2),and systematically study its structure and physical properties by transport,magnetism,and heat capacity measurements.Single-crystal x-ray diffraction rev... We report the growth of high-quality single crystals of RhP_(2),and systematically study its structure and physical properties by transport,magnetism,and heat capacity measurements.Single-crystal x-ray diffraction reveals that RhP_(2) adopts a monoclinic structure with the cell parameters a=5.7347(10)A,b=5.7804(11)A,and c=5.8222(11)A,space group P2_(1)/c(No.14).The electrical resistivityρ(T)measurements indicate that RhP_(2) exhibits narrow-bandgap behavior with the activation energies of 223.1 meV and 27.4 meV for two distinct regions,respectively.The temperaturedependent Hall effect measurements show electron domain transport behavior with a low charge carrier concentration.We find that RhP_(2) has a high mobilityμ_(e)~210 cm^(2)·V^(-1)·s^(-1)with carrier concentrations n_(e)~3.3×10^(18)cm^(3) at 300 K with a narrow-bandgap feature.The high mobilityμ_(e) reaches the maximum of approximately 340 cm^(2)·V^(-1)·s^(-1)with carrier concentrations n_^(e)~2×10^(18)cm^(-3)at 100 K.No magnetic phase transitions are observed from the susceptibilityχ(T)and specific heat C_(p)(T)measurements of RhP_(2).Our results not only provide effective potential as a material platform for studying exotic physical properties and electron band structures but also motivate further exploration of their potential photovoltaic and optoelectronic applications. 展开更多
关键词 single crystal growth narrow band system electrical transport high mobilities
下载PDF
上一页 1 2 213 下一页 到第
使用帮助 返回顶部