The behavior of single bubble rising in quiescent shear-thinning tlmds was lnvestlgateO numerically by level set metnoa. number of bubbles in a large range of Reynolds number and Eotvos number were investigated includ...The behavior of single bubble rising in quiescent shear-thinning tlmds was lnvestlgateO numerically by level set metnoa. number of bubbles in a large range of Reynolds number and Eotvos number were investigated including spherical, oblate and spherical. The bubble shape and drag coefficient were compared with experimental results. It is observed that the simulated results show good conformity to experimental results over a wide range of Reynolds number. In addition, the detailed flow field based on the reference coordinate system moving with the bubble is obtained, and the relationship among flow field, bubble shape and velocity is discussed.展开更多
It is common to empirically correlate volumetric mass transfer coefficient kLa for predicting gas–liquid mass transfer in industrial applications,and the investigation of single bubble mass transfer is crucial for a ...It is common to empirically correlate volumetric mass transfer coefficient kLa for predicting gas–liquid mass transfer in industrial applications,and the investigation of single bubble mass transfer is crucial for a detailed understanding of mass transfer mechanism.In this work,experiments,models and simulations based on the experimental results were highlighted to elucidate the mass transfer between single bubbles and ambient liquid.The experimental setups,measurement methods,the mass transfer of single bubbles in the Newtonian and the nonNewtonian liquid,models derived from the concept of eddy diffusion,the extension of Whitman’s,Higbie’s and Danckwerts’models,or dimensionless numbers,and simulation methods on turbulence,gas–liquid partition methods and mass transfer source term determination are introduced and commented on.Although people have a great knowledge on mass transfer between single bubbles and ambient liquid in single conditions,it is still insufficient when facing complex liquid conditions or some phenomena such as turbulence,contamination or non-Newtonian behavior.Additional studies on single bubbles are required for experiments and models in various liquid conditions in future.展开更多
Single bubble sonoluminescence is a process of energy transformation from sound to light. Therefore the motion equations of near spherical vibration of a gas bubble in an incompressible and viscous liquid can be deduc...Single bubble sonoluminescence is a process of energy transformation from sound to light. Therefore the motion equations of near spherical vibration of a gas bubble in an incompressible and viscous liquid can be deduced by Lagrangian Equation with dissipation function when the bubble is considered as a vibrator surrounded by liquid. The analytical solutions in the bubble expanding, collapsing and rebounding stages can be obtained by solving these motion equations when some approximations are adopted. And the dynamic behaviors of the bubble in these three stages are discussed.展开更多
The phenomena of a single bubble boiling process are studied with numerical modeling.The mass,momentum,energy and level set equations are solved using COMSOL and temperature field in time are analyzed,and reasonable r...The phenomena of a single bubble boiling process are studied with numerical modeling.The mass,momentum,energy and level set equations are solved using COMSOL and temperature field in time are analyzed,and reasonable results are obtained.The numeral model is validated by the empirical equation of Fritz and could be used for various applications.展开更多
This paper presents analyses and numerical calculations of a single bubble movement and its cavitation behav- ior where the influence of air diffusion,pressure fluctuation,relative velocity between the bubble and flui...This paper presents analyses and numerical calculations of a single bubble movement and its cavitation behav- ior where the influence of air diffusion,pressure fluctuation,relative velocity between the bubble and fluid and the growing bubble burst effect are considered.The calculational resuits provides rather detailed description of a single bubble movement and its cavitation behavior.展开更多
Dynamics of a single cavitation bubble in sodium dodecyl sulfate(SDS) aqueous solutions is investigated experimentally and theoretically. The bubble pulsation is measured by a phase-locked integrated imaging techniq...Dynamics of a single cavitation bubble in sodium dodecyl sulfate(SDS) aqueous solutions is investigated experimentally and theoretically. The bubble pulsation is measured by a phase-locked integrated imaging technique,and the ambient radius is obtained by fitting the numerical calculation based on the Rayleigh–Plesset bubble dynamics model to the experimental data. The results show that, under the same driving condition, the ambient radius of the cavitation bubble decreases correspondingly with the increase of SDS concentration within the critical micelle concentration, while the compression ratio of the radius increases, which indicates that the addition of SDS decreases the internal molecular number of the cavitation bubble and increases the power capability of the cavitation bubble. In addition, bubble oscillation increases the concentration of the surfactant molecules on the bubble wall, so that the effect of SDS on a single cavitation bubble is reduced when the SDS concentration is greater than 0.8 m M.展开更多
In this study,the effects of surfactants on the hydrodynamic characteristics of bubbles in shear-thinning fluids at low Reynolds number(Re<50)are investigated.The bubble terminal velocity and drag coefficient of bu...In this study,the effects of surfactants on the hydrodynamic characteristics of bubbles in shear-thinning fluids at low Reynolds number(Re<50)are investigated.The bubble terminal velocity and drag coefficient of bubble in clean and contaminated carboxymethylcellulose(CMC)solutions are obtained using a high-speed camera for examining differences.The results show that the existence of surfactant could reduce the terminal velocity of bubble at small volume(0.25wt%CMC:<100 mm3;0.50wt%CMC:<110 mm3),attributed to stiffening the bubble interface.However,this negative effect decreases and finally disappears with increasing bubble volume.The drag coefficient curves of the bubble in contaminated CMC solution exhibit behavior similar to that exhibited by a solid sphere at Re<10,indicating that internal circulation flow is absent at the bubble interface as compared to that in clean CMC solution.However,for 10<Re<40,a transition of drag curve from 24/Re to 16/Re in contaminated CMC solution is observed,which is easy at low SDS concentrations and high CMC concentrations.展开更多
The gas–liquid flow behavior of the stirred flow field,the different positions of a single bubble,the initial velocity,the surface tension and the agglomeration of multiple bubbles were studied by CFD numerical simul...The gas–liquid flow behavior of the stirred flow field,the different positions of a single bubble,the initial velocity,the surface tension and the agglomeration of multiple bubbles were studied by CFD numerical simulation.The results show that the pressure distribution and velocity distribution inside the fluid during agitation indicate that the velocity difference between the liquid and the gas phase and the collision between the bubbles caused by the turbulent behavior of the liquid are the important conditions leading to the bubble breakage.Different initial bubble positions and initial bubble velocities have important effects on single bubble breakage.The surface tension is an important condition that affects the bubble breakage.When the surface tension coefficient is 0.7,the bubble will be stretched to the smallest degree;when the surface tension coefficient is 0.1,the bubble will be stretched to the largest degree and it will be easily broken into smaller bubbles.The multi-bubble results show the states and trajectories of coalescence between bubbles.The research results can provide data support for the engineering application of desulfurization process and theoretical guidance for the research of bubble breaking mechanism.展开更多
The single-film bubble has a special geometry with a certain amount of gas shrouded by a thin layer of liquid film under the surface tension force both on the inside and outside surfaces of the bubble. Based on the me...The single-film bubble has a special geometry with a certain amount of gas shrouded by a thin layer of liquid film under the surface tension force both on the inside and outside surfaces of the bubble. Based on the mesh-less moving particle semi-implicit(MPS) method, a single-film double-gas-liquid-interface surface tension(SDST) model is established for the single-film bubble,which characteristically has totally two gas-liquid interfaces on both sides of the film. Within this framework, the conventional surface free energy surface tension model is improved by using a higher order potential energy equation between particles, and the modification results in higher accuracy and better symmetry properties. The complex interface movement in the oscillation process of the single-film bubble is numerically captured, as well as typical flow phenomena and deformation characteristics of the liquid film.In addition, the basic behaviors of the coalescence and connection process between two and even three single-film bubbles are studied, and the cases with bubbles of different sizes are also included. Furthermore, the classic plateau structure in the foam system is reproduced and numerically proved to be in the steady state for multi-bubble connections.展开更多
基金Project(21406141)supported by the National Natural Science Foundation of ChinaProject(20141078)supported by the Scientific Research Starting Foundation for Doctors of Liaoning Province,China+1 种基金Project(L2014060)supported by the Foundation of Department of Education of Liaoning Province,ChinaProject(157B21)supported by the Scientific Research Starting Foundation for Doctors of Shenyang Aerospace University,China
文摘The behavior of single bubble rising in quiescent shear-thinning tlmds was lnvestlgateO numerically by level set metnoa. number of bubbles in a large range of Reynolds number and Eotvos number were investigated including spherical, oblate and spherical. The bubble shape and drag coefficient were compared with experimental results. It is observed that the simulated results show good conformity to experimental results over a wide range of Reynolds number. In addition, the detailed flow field based on the reference coordinate system moving with the bubble is obtained, and the relationship among flow field, bubble shape and velocity is discussed.
基金supported by the National Key Research&Development Program of China(2017YFB0306703)the National Natural Science Foundation of China(No.21676007)the Fundamental Research Funds for the Central Universities(XK1802-1)。
文摘It is common to empirically correlate volumetric mass transfer coefficient kLa for predicting gas–liquid mass transfer in industrial applications,and the investigation of single bubble mass transfer is crucial for a detailed understanding of mass transfer mechanism.In this work,experiments,models and simulations based on the experimental results were highlighted to elucidate the mass transfer between single bubbles and ambient liquid.The experimental setups,measurement methods,the mass transfer of single bubbles in the Newtonian and the nonNewtonian liquid,models derived from the concept of eddy diffusion,the extension of Whitman’s,Higbie’s and Danckwerts’models,or dimensionless numbers,and simulation methods on turbulence,gas–liquid partition methods and mass transfer source term determination are introduced and commented on.Although people have a great knowledge on mass transfer between single bubbles and ambient liquid in single conditions,it is still insufficient when facing complex liquid conditions or some phenomena such as turbulence,contamination or non-Newtonian behavior.Additional studies on single bubbles are required for experiments and models in various liquid conditions in future.
基金This project is supported by the Key Program ofthe National Science Foundation ofChina(Grant 19934001 and 59738150)and Doctoral Foundation of Education Ministry of China.
文摘Single bubble sonoluminescence is a process of energy transformation from sound to light. Therefore the motion equations of near spherical vibration of a gas bubble in an incompressible and viscous liquid can be deduced by Lagrangian Equation with dissipation function when the bubble is considered as a vibrator surrounded by liquid. The analytical solutions in the bubble expanding, collapsing and rebounding stages can be obtained by solving these motion equations when some approximations are adopted. And the dynamic behaviors of the bubble in these three stages are discussed.
文摘The phenomena of a single bubble boiling process are studied with numerical modeling.The mass,momentum,energy and level set equations are solved using COMSOL and temperature field in time are analyzed,and reasonable results are obtained.The numeral model is validated by the empirical equation of Fritz and could be used for various applications.
文摘This paper presents analyses and numerical calculations of a single bubble movement and its cavitation behav- ior where the influence of air diffusion,pressure fluctuation,relative velocity between the bubble and fluid and the growing bubble burst effect are considered.The calculational resuits provides rather detailed description of a single bubble movement and its cavitation behavior.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11334005 and 11574150
文摘Dynamics of a single cavitation bubble in sodium dodecyl sulfate(SDS) aqueous solutions is investigated experimentally and theoretically. The bubble pulsation is measured by a phase-locked integrated imaging technique,and the ambient radius is obtained by fitting the numerical calculation based on the Rayleigh–Plesset bubble dynamics model to the experimental data. The results show that, under the same driving condition, the ambient radius of the cavitation bubble decreases correspondingly with the increase of SDS concentration within the critical micelle concentration, while the compression ratio of the radius increases, which indicates that the addition of SDS decreases the internal molecular number of the cavitation bubble and increases the power capability of the cavitation bubble. In addition, bubble oscillation increases the concentration of the surfactant molecules on the bubble wall, so that the effect of SDS on a single cavitation bubble is reduced when the SDS concentration is greater than 0.8 m M.
基金Project(21406141)supported by the National Natural Science Foundation of ChinaProject(20141078)supported by the National Basic Research Program,ChinaProject(L201733)supported by the Research Foundation of Education Bureau of Liaoning Province,China
文摘In this study,the effects of surfactants on the hydrodynamic characteristics of bubbles in shear-thinning fluids at low Reynolds number(Re<50)are investigated.The bubble terminal velocity and drag coefficient of bubble in clean and contaminated carboxymethylcellulose(CMC)solutions are obtained using a high-speed camera for examining differences.The results show that the existence of surfactant could reduce the terminal velocity of bubble at small volume(0.25wt%CMC:<100 mm3;0.50wt%CMC:<110 mm3),attributed to stiffening the bubble interface.However,this negative effect decreases and finally disappears with increasing bubble volume.The drag coefficient curves of the bubble in contaminated CMC solution exhibit behavior similar to that exhibited by a solid sphere at Re<10,indicating that internal circulation flow is absent at the bubble interface as compared to that in clean CMC solution.However,for 10<Re<40,a transition of drag curve from 24/Re to 16/Re in contaminated CMC solution is observed,which is easy at low SDS concentrations and high CMC concentrations.
基金supported by the National Natural Science Foundation of China(51904069)the Fundamental Research Funds for the Central Universities(N2223026)the Scientific Research Fund Project of Northeastern University at Qinhuangdao(XNY201808).
文摘The gas–liquid flow behavior of the stirred flow field,the different positions of a single bubble,the initial velocity,the surface tension and the agglomeration of multiple bubbles were studied by CFD numerical simulation.The results show that the pressure distribution and velocity distribution inside the fluid during agitation indicate that the velocity difference between the liquid and the gas phase and the collision between the bubbles caused by the turbulent behavior of the liquid are the important conditions leading to the bubble breakage.Different initial bubble positions and initial bubble velocities have important effects on single bubble breakage.The surface tension is an important condition that affects the bubble breakage.When the surface tension coefficient is 0.7,the bubble will be stretched to the smallest degree;when the surface tension coefficient is 0.1,the bubble will be stretched to the largest degree and it will be easily broken into smaller bubbles.The multi-bubble results show the states and trajectories of coalescence between bubbles.The research results can provide data support for the engineering application of desulfurization process and theoretical guidance for the research of bubble breaking mechanism.
基金Project supported by the National Natural Science Foundation of China(Grant No.51576154)
文摘The single-film bubble has a special geometry with a certain amount of gas shrouded by a thin layer of liquid film under the surface tension force both on the inside and outside surfaces of the bubble. Based on the mesh-less moving particle semi-implicit(MPS) method, a single-film double-gas-liquid-interface surface tension(SDST) model is established for the single-film bubble,which characteristically has totally two gas-liquid interfaces on both sides of the film. Within this framework, the conventional surface free energy surface tension model is improved by using a higher order potential energy equation between particles, and the modification results in higher accuracy and better symmetry properties. The complex interface movement in the oscillation process of the single-film bubble is numerically captured, as well as typical flow phenomena and deformation characteristics of the liquid film.In addition, the basic behaviors of the coalescence and connection process between two and even three single-film bubbles are studied, and the cases with bubbles of different sizes are also included. Furthermore, the classic plateau structure in the foam system is reproduced and numerically proved to be in the steady state for multi-bubble connections.