On the basis of previous studies dealing with the variation of major agronomic and yield characteristics of regenerated plants derived from single cell culture in vitro of common wheat (Triticum aestivum L.Cult...On the basis of previous studies dealing with the variation of major agronomic and yield characteristics of regenerated plants derived from single cell culture in vitro of common wheat (Triticum aestivum L.Cultivar NE 7742), the grain protein content and its fractions from regenerated plants with stable agronomic characteristics were studied from 1992 to 1995. The results showed that the variation of grain protein content and its fractions in somaclones from single cell culture in vitro were very significant and the range was very wide (11531770%). Several types of variation were found in the studies, especially the type with higher protein content than that of cultivar NE 7742 (non-culture parent). Among them, -2069% of lines the grain protein content was significantly higher than that of NE 7742 and combined with high yielding potential. The tendency of variation of the four protein fractions showed that the variation of albumin was not obvious and maintained the same level as NE774 increased in some somaclones and decreased in others. However, the percentages both globulin and glutenin tended to increase. The variation of total amount of structural protein and the ratio between globulin and glutenin tended to increase. The variation of total amount of structural protein and the ratio between globulin and albumm was mainly influenced by globulin under the condition of culture in vitro. The variation of total amount of storage protein and the ratio between gliadin and glutenin was mainly affected by glutenin. The results mentioned above demonstrated that the induction and screening of somaclonal variation could be an effective way in wheat improvement in combining high protein content with high yield.展开更多
We developed an integrated microfluidic chip for long-term culture of isolated single cells. This polydimethylsiloxane (PDMS) based device could accurately seed each single cell into different culture chambers, and is...We developed an integrated microfluidic chip for long-term culture of isolated single cells. This polydimethylsiloxane (PDMS) based device could accurately seed each single cell into different culture chambers, and isolate one chamber from each other with monolithically integrated pneumatic valves. We optimized the culture conditions, including the frequency of medium replacement and the introduction of conditioned medium, to keep the single cells alive for 4 days. We cultured a few hundred cells in a separated chamber on the same chip to continuously supply the conditioned medium into the culture chambers for single cells. This approach greatly facilitated the growth of single cells, and created a suitable microenvironment for observing cells' autonomous process in situ without the interference of other adjacent cells. This single cell colony assay is expandable to higher throughput, fitting the needs in the studies of drug screening and stem cell differentiation.展开更多
Yield characters, maturity and grain protein content of somaclones derived both from immature embryo of cultivar 77(2)-Spring and single-cell culture of cultivar NE7742 in vitro were studied and the wide variation was...Yield characters, maturity and grain protein content of somaclones derived both from immature embryo of cultivar 77(2)-Spring and single-cell culture of cultivar NE7742 in vitro were studied and the wide variation was found. Somaclones with maturity 8 days earlier than or the same as CK NE 7742 (high yield, early maturity and high quality), combining with high quality (grain protein content 15.5% - 18%) and high yield (the same as 7724 or higher) have been found and selected and now multiplied for 8 generations. The results of cultivar comparison trial in 1995 showed that several somaclones (the yields were significantly higher than CK DN120) could be used directly in wheat production. The studies confirmed that somaclonal variation is one of the effective ways for early maturity, high-yielding and high-quality improvement in wheat.展开更多
文摘On the basis of previous studies dealing with the variation of major agronomic and yield characteristics of regenerated plants derived from single cell culture in vitro of common wheat (Triticum aestivum L.Cultivar NE 7742), the grain protein content and its fractions from regenerated plants with stable agronomic characteristics were studied from 1992 to 1995. The results showed that the variation of grain protein content and its fractions in somaclones from single cell culture in vitro were very significant and the range was very wide (11531770%). Several types of variation were found in the studies, especially the type with higher protein content than that of cultivar NE 7742 (non-culture parent). Among them, -2069% of lines the grain protein content was significantly higher than that of NE 7742 and combined with high yielding potential. The tendency of variation of the four protein fractions showed that the variation of albumin was not obvious and maintained the same level as NE774 increased in some somaclones and decreased in others. However, the percentages both globulin and glutenin tended to increase. The variation of total amount of structural protein and the ratio between globulin and glutenin tended to increase. The variation of total amount of structural protein and the ratio between globulin and albumm was mainly influenced by globulin under the condition of culture in vitro. The variation of total amount of storage protein and the ratio between gliadin and glutenin was mainly affected by glutenin. The results mentioned above demonstrated that the induction and screening of somaclonal variation could be an effective way in wheat improvement in combining high protein content with high yield.
基金supported by the National Natural Science Foundation of China (20733001, 20890020, 90913011, 20905004)the Ministry of Science and Technology of China (2011CB809106)+1 种基金the Ministry of Education of Chinathe Fok Ying Tung Education Foundation
文摘We developed an integrated microfluidic chip for long-term culture of isolated single cells. This polydimethylsiloxane (PDMS) based device could accurately seed each single cell into different culture chambers, and isolate one chamber from each other with monolithically integrated pneumatic valves. We optimized the culture conditions, including the frequency of medium replacement and the introduction of conditioned medium, to keep the single cells alive for 4 days. We cultured a few hundred cells in a separated chamber on the same chip to continuously supply the conditioned medium into the culture chambers for single cells. This approach greatly facilitated the growth of single cells, and created a suitable microenvironment for observing cells' autonomous process in situ without the interference of other adjacent cells. This single cell colony assay is expandable to higher throughput, fitting the needs in the studies of drug screening and stem cell differentiation.
文摘Yield characters, maturity and grain protein content of somaclones derived both from immature embryo of cultivar 77(2)-Spring and single-cell culture of cultivar NE7742 in vitro were studied and the wide variation was found. Somaclones with maturity 8 days earlier than or the same as CK NE 7742 (high yield, early maturity and high quality), combining with high quality (grain protein content 15.5% - 18%) and high yield (the same as 7724 or higher) have been found and selected and now multiplied for 8 generations. The results of cultivar comparison trial in 1995 showed that several somaclones (the yields were significantly higher than CK DN120) could be used directly in wheat production. The studies confirmed that somaclonal variation is one of the effective ways for early maturity, high-yielding and high-quality improvement in wheat.